
TriP Documentation
Release 0.9

Torben Miller

Apr 02, 2022

CONTENTS

1 Features 3
1.1 How TriP models Robots . 3
1.2 Getting Started . 19
1.3 Tutorials . 19
1.4 Code Documentation . 28

2 Indices and tables 39

Python Module Index 41

Index 43

i

ii

TriP Documentation, Release 0.9

Have you ever worked with a robot with hydraulic actuators? Or ever have to compensate bad motors by having them
moving the joint via a complicated linkage?

Then you have worked with a hybrid kinematic chain.

TriP is a python library designed to calculate the forward- and inverse-kinematics of such chains. Since hybrid chains
are the most general type of rigid mechanism this includes almost all robots.

CONTENTS 1

TriP Documentation, Release 0.9

2 CONTENTS

CHAPTER

ONE

FEATURES

• Model any robot (including closed and hybrid chains)

• Generate symbolic representations of forward kinematics

• Compute Jacobian matrices for differential kinematics

• Compute the inverse kinematics of arbitrary rigid mechanisms

• Compute the Inverse Kinematics in position and/or orientation

• Support arbitrary joint types and quaternions

• Includes several ready to use examples (TriPed robot, Excavator Arm)

• TriPs validates the inverse kinematics algorithms with extensive testing using analytic solutions.

1.1 How TriP models Robots

TriP models robots using the Robot class. A robot object is made up of Transformation and KinematicGroup
objects. The KinematicGroup objects are used to model closed chains.

The following sections will explain the Transformation, KinematicGroup and Robot objects in more detail. It is
advised to read these sections before using them to model robots.

The last section also explains how Kinematic Solvers work.

1.1.1 Transformations

A Kinematic model is made up of Coordinate systems. These coordinate systems are connected by transformations.

TriP implements its own Transformation class.

One can distinguish between static transformations and dynamic transformations. Dynamic transformations change
depending on an internal state thereby modeling the joints of a mechanism.

The Transformation class has an attribute that manages the internal state.

3

TriP Documentation, Release 0.9

Transformation Descriptions

In general, states can influence the transformation in arbitrary ways. Yet robotics uses several standard conventions.

The Transormation class currently supports the following conventions:

• translation with Euler angle rotation

• translation with quaternion rotation

Translation with Euler Angles rotation

This convention is perhaps the most natural and intuitive. In this convention, the transformation is specified using 6
parameters [tx ty tz rx ry rz]. These parameters have the following interpretation:

parameter interpretation
tx moves the coordinate system along the x-axis
ty moves the coordinate system along the y-axis
tz moves the coordinate system along the z-axis
rx rotates the coordinate system around the x-axis
ry rotates the coordinate system around the y-axis
rz rotates the coordinate system around the z-axis

Important: In this convention, rotation is always applied before translation.

The Euler angles follow the XYZ convention. This means that the transformation first rotates around x, then around y,
and lastly around z. This convention is also called Roll, Pitch, and Yaw. Here rx=Roll, ry=Pitch, and rz=Yaw.

This transformation is captured by the following transformation matrix:⎛⎜⎜⎝
cos 𝑟𝑧 cos 𝑟𝑦 cos 𝑟𝑧 sin 𝑟𝑦 sin 𝑟𝑥− sin 𝑟𝑧 cos 𝑟𝑥 cos 𝑟𝑧 sin 𝑟𝑦 cos 𝑟𝑥+ sin 𝑟𝑧 sin 𝑟𝑥 𝑡𝑥
sin 𝑟𝑧 cos 𝑟𝑦 sin 𝑟𝑧 sin 𝑟𝑦 sin 𝑟𝑥+ cos 𝑟𝑧 cos 𝑟𝑥 sin 𝑟𝑧 sin 𝑟𝑦 cos 𝑟𝑥− cos 𝑟𝑧 sin 𝑟𝑥 𝑡𝑦
− sin 𝑟𝑦 cos 𝑟𝑦 sin 𝑟𝑥 cos 𝑟𝑦 cos 𝑟𝑥 𝑡𝑧

0 0 0 1

⎞⎟⎟⎠
The definition of joints in this convention is very straightforward, below is a sample list of different joints:

4 Chapter 1. Features

TriP Documentation, Release 0.9

Note that while all non specified parameters are assumed to be zero, the value of each state_variable still has to be
supplied.

Translation with Quaternion rotation

Quaternions are an alternative four-dimensional description of rotation. They have many advantages compared to Euler
angles, which are explained here . However, they trade these advantages for an intuitive interpretation.

parameter interpretation
tx moves the coordinate system along the x-axis
ty moves the coordinate system along the y-axis
tz moves the coordinate system along the z-axis
qw first quaternion, also called a.
qx second quaternion, also called b.
qy third quaternion, also called c.
qz fourth quaternion, also called d.

The corresponding matrix is:⎛⎜⎜⎝
1− 2(𝑞2𝑦 + 𝑞2𝑧) 2(𝑞𝑥𝑞𝑦 − 𝑞𝑧𝑞𝑤) 2(𝑞𝑥𝑞𝑧 + 𝑞𝑦𝑞𝑤) 𝑡𝑥
2(𝑞𝑥𝑞𝑦 + 𝑞𝑧𝑞𝑤) 1− 2(𝑞2𝑥 + 𝑞2𝑧) 2(𝑞𝑦𝑞𝑧 − 𝑞𝑥𝑞𝑤) 𝑡𝑦
2(𝑞𝑥𝑞𝑧 − 𝑞𝑦𝑞𝑤) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑥𝑞𝑤) 1− 2(𝑞2𝑥 + 𝑞2𝑦) 𝑡𝑧

0 0 0 1

⎞⎟⎟⎠

Important: The matrix only describes a rotation if all quaternions are normalized, meaning 𝑞𝑤2+𝑞𝑥2+𝑞𝑦2+𝑞𝑧2 = 1.
Since the current inverse kinematics solver does not support constraints this means that quaternions are not supported
when calculating inverse kinematics.

1.1. How TriP models Robots 5

https://en.wikipedia.org/wiki/Quaternion

TriP Documentation, Release 0.9

Transformation trees

To fully specify the kinematic model of a robot not only the transformations are needed but also how they are connected.
This is described by the so-called transformation tree. Conventionally nodes of this tree describe coordinate frames
while its edges describe transformations. An example can be seen down below:

Here the cursive graph nodes are coordinate frames while the edges are the transformations between them. Since TriP
only models transformations and not coordinate frames in TriP the name of a coordinate frame is synonymous with the
name of the transformation leading to it. This leads to the following simplified transformation tree:

In this tree the edge and the node it leads to refer to the transformation. TriP builds this simplified transformation tree
by specifying the parent of each transformation. The parent is in this case the transformation that preceded the current
transformation. For the example transformation tree this would look like this:

to_joint_1 = Transformation(name="To Join1")
(continues on next page)

6 Chapter 1. Features

TriP Documentation, Release 0.9

(continued from previous page)

joint_1 = Transformation(name="Joint1",values={'ry': 0},state_variables=['ry'],
→˓parent=to_joint_1)

to_joint_2 = Transformation(name="To Joint2",values={'tx':1},parent=joint_1)
joint_2 = Transformation(name="Joint2",values={'ry': 0},state_variables=['ry'],
→˓parent=to_joint_2)
to_joint_3 = Transformation(name="To Joint3",values={'tx':1},parent=joint_2)
joint_3 = Transformation(name="Joint3",values={'ry': 0},state_variables=['ry'],
→˓parent=to_joint_3)

to_joint_4 = Transformation(name="To Joint4",values={'tx':1},parent=joint_1)
joint_4 = Transformation(name="Joint4",values={'ry': 0},state_variables=['ry'],
→˓parent=to_joint_4)
to_joint_5 = Transformation(name="To Joint5",values={'tx':1},parent=joint_4)
joint_5 = Transformation(name="Joint5",values={'ry': 0},state_variables=['ry'],
→˓parent=to_joint_5)

Important: Transformations with no parent are considered connected to the base Frame. Since for most robots,
this is where they are connected to the floor this frame is also called Ground. This can be seen in transformation
`to_joint_1`. Note that strictly speaking this transformation is necessary since its transformation is an identity
matrix. It is only included for clarity.

The transformation tree building concept does not work if more than one transformation leads to the same frame. Here
one would have to distinguish between the transformations leading to the frame and the frame itself. Such a situation
is referred to as a closed kinematic chain, the next section will explain how they are modeled in TriP.

1.1.2 Kinematic Groups

Most kinematic libraries rely only on transformation objects because they only model open chains. An example for
this is IKPY . In an open chain, the position and orientation of a coordinate system depend only on one transformation
from its parent.

But, consider the excavator arm below:

1.1. How TriP models Robots 7

https://github.com/Phylliade/ikpy

TriP Documentation, Release 0.9

In this example, multiple coordinate systems have more than one parent since the transformations form a loop.

Such a loop is called a closed kinematic chain.

Classically closed chains are modeled using an algebraic closure equation 𝑔(𝑞) = 0. The closure equation couples all
joint states 𝑞 so that multi transformations leading to the same frame all agree on the state of the frame.

In practice, this is computationally expensive and often entirely unnecessary.

Important: To simplify the system one could treat the system as if the hinges of the excavator’s arm were directly
actuated.

This simplified virtual chain contains no closed loops and thus standard kinematics algorithms can be used to compute
forward or inverse kinematics.

To get the solution of the real excavator, one simply has to convert between the state of the hinges and the state of the
hydraulic cylinders.

This can be done using some kind of mapping function based on trigonometry.

TriP embraces this mapping approach and implements it using the KinematicGroup class. A KinematicGroup is
made up of a virtual_chain, an actuated_state, and two mappings. The mappings convert between the state of the
virtual_chain, called virtual_state, and the state of the actuated joints called actuated_state.

8 Chapter 1. Features

TriP Documentation, Release 0.9

Important: The virtual_chain has to be a single open chain without branches. The reasons for this will be discussed
in the next section

divide a robot into groups

In the example above the excavator is modeled as a single group. However, it is also possible to divide the excavator
into multiple groups. These groups can then be combined just like transformations. Multiple smaller groups have two
advantages over a single large group:

For one it improves modularity, making it easier to reuse assembly parts.

But more importantly, it reduced computational cost. To keep virtual and actuated state consistent mapping has to be
called every time part of one state changes. A single group mechanism would mean updating every state. This problem
is especially bad for branching mechanisms. Consider a four-legged robot, setting the actuator of one leg would then
mean updating all four legs. To prevent this problem outright the virtual chain can not contain branches.

In summary, groups should be defined as small as possible. Small in this case refers to the number of actuators that
have to be grouped. The minimum size is defined by the closed chains. Consider the following mechanism

1.1. How TriP models Robots 9

TriP Documentation, Release 0.9

Grouping a) and c) are valid groups, with a) being more performant. However the Grouping in b) is not valid. The
reason is that the state of the top platform depends on the state of all three green prismatic joints.

These considerations lead to the following guidelines for building hybrid robots:

Important: Every closed chain should be modeled by a Group. Every open chain should be modeled by Transforma-
tions. Se the following robots as an example:

The excavator has two actuated states and two virtual states. These are the lengths of hydraulic cylinders 𝑎1, 𝑎2 and
the arm angles 𝑞1, 𝑞2. Since each cylinder length 𝑎𝑖 controls one arm angle 𝑞𝑖, the excavator can be divided into two
groups. These are visualized by the green and blue parts respectively.

The mappings for each group can be calculated using trigonometry:

10 Chapter 1. Features

TriP Documentation, Release 0.9

The full code for the excavator looks like this:

1 from typing import Dict
2 from math import radians
3 import casadi
4 import numpy as np
5

6 from trip_kinematics.Utility import hom_rotation, get_translation
7 from trip_kinematics.Utility import hom_translation_matrix, y_axis_rotation_matrix
8 from trip_kinematics.KinematicGroup import KinematicGroup
9 from trip_kinematics.Transformation import Transformation

10 from trip_kinematics.Robot import Robot
11

12

13 l_1 = 1
14 l_2 = 0.7
15 l_3 = 1.2
16 l_4 = 0.4
17 l_5 = 1.7
18

19 # zero conventions for the actuated joints
20 a_1_offset = 0
21 a_2_offset = 0
22

23 virtual_joint_1 = Transformation(name="q_1",
24 values={'ry': 0},
25 state_variables=['ry'])
26 link_1 = Transformation(name="link_1",
27 values={'tx': l_1+l_3+0.4},
28 parent=virtual_joint_1)
29 virtual_joint_2 = Transformation(name="q_2",
30 values={'ry': radians(-90)},
31 state_variables=['ry'])
32 link_2 = Transformation(name="link_2",
33 values={'tx': l_5},
34 parent=virtual_joint_2)
35

36

37 ##
38 # Direct mappings using geometric calculations #

(continues on next page)

1.1. How TriP models Robots 11

TriP Documentation, Release 0.9

(continued from previous page)

39 ##
40

41 def geometric_q_to_a_group_1(state: Dict[str, float], tips: Dict[str, float] = None):
42 # convert joint angle to triangle angle
43 q_1 = radians(90) - state['q_1']['ry']
44 return {'a_1': np.sqrt(l_1**2+l_2**2-2*l_1*l_2*np.cos(q_1))}
45

46

47 def geometric_a_to_q_group_1(state: Dict[str, float], tips: Dict[str, float] = None):
48 a_1 = state['a_1'] + a_1_offset
49 return {'q_1': {'ry': np.arccos((l_1**2+l_2**2-a_1**2)/(2*l_1*l_2))}}
50

51

52 def geometric_q_to_a_group_2(state: Dict[str, float], tips: Dict[str, float] = None):
53 q_2 = -1 * state['q_2']['ry'] # convert joint angle to triangle angle
54 return {'a_2': np.sqrt(l_3**2+l_4**2-2*l_3*l_4*np.cos(q_2))}
55

56

57 def geometric_a_to_q_group_2(state: Dict[str, float], tips: Dict[str, float] = None):
58 a_2 = state['a_2'] + a_2_offset
59 return {'q_2': {'ry': np.arccos((l_3**2+l_4**2-a_2**2)/(2*l_3*l_4))}}
60

61

62 geometric_group_1 = KinematicGroup(name="geometric group 1",
63 virtual_chain=[virtual_joint_1, link_1],
64 actuated_state={'a_1': 0},
65 actuated_to_virtual=geometric_a_to_q_group_1,
66 virtual_to_actuated=geometric_q_to_a_group_1)
67

68 geometric_group_2 = KinematicGroup(name="geometric group 2",
69 virtual_chain=[virtual_joint_2, link_2],
70 actuated_state={'a_2': 0},
71 actuated_to_virtual=geometric_a_to_q_group_2,
72 virtual_to_actuated=geometric_q_to_a_group_2,
73 parent=geometric_group_1)
74

75 geometric_excavator = Robot([geometric_group_1, geometric_group_2])

actuated state vs virtual state

If one looks at the code above one can see that the dictionary values of the actuated state in lines 26 and 36 are float
values, while the values of the virtual states in lines 32 and 39 are dictionaries.

This difference is because virtual states always specify convention parameters of a Transformation. Actuated values
on the other hand are not associated with a Transformation and thus don’t adhere to transformation conventions.

This is an important difference to keep in mind when dealing with both states. Below are a few examples of joints and
how their actuated and virtual states would differ.

12 Chapter 1. Features

TriP Documentation, Release 0.9

Using closure equations

While direct mappings are always preferable it is not always possible to find a direct function. In this case, one can
always resort to the closure equation. Since TriP is based on mappings the closure equation is used to set up mapping
functions that solve the closure equation. For the mapping from actuated state to virtual state, the actuated states are
fixed and the virtual states calculated. Likewise, for the reverse mapping, the virtual state is fixed while the actuated
states are calculated.

The setup of the closure equation will require extra transformations. This can be done by building a full open chain
or for simple chains by directly setting up the transformation matrices using the Utility submodule. In this case of the
excavator, the following joints can be defined:

The solving of the closure equation can be performed by casadi, which TriP also uses for inverse kinematics calculations:

1.1. How TriP models Robots 13

TriP Documentation, Release 0.9

1 from typing import Dict
2 from math import radians
3 import casadi
4 import numpy as np
5

6 from trip_kinematics.Utility import hom_rotation, get_translation
7 from trip_kinematics.Utility import hom_translation_matrix, y_axis_rotation_matrix
8 from trip_kinematics.KinematicGroup import KinematicGroup
9 from trip_kinematics.Transformation import Transformation

10 from trip_kinematics.Robot import Robot
11

12

13 l_1 = 1
14 l_2 = 0.7
15 l_3 = 1.2
16 l_4 = 0.4
17 l_5 = 1.7
18

19 # zero conventions for the actuated joints
20 a_1_offset = 0
21 a_2_offset = 0
22

23 virtual_joint_1 = Transformation(name="q_1",
24 values={'ry': 0},
25 state_variables=['ry'])
26 link_1 = Transformation(name="link_1",
27 values={'tx': l_1+l_3+0.4},
28 parent=virtual_joint_1)
29 virtual_joint_2 = Transformation(name="q_2",
30 values={'ry': radians(-90)},
31 state_variables=['ry'])
32 link_2 = Transformation(name="link_2",
33 values={'tx': l_5},
34 parent=virtual_joint_2)
35

36

37 ###
38 # mappings using colsure equation solution geometric calculations #
39 ###
40 opts = {'ipopt.print_level': 0, 'print_time': 0}
41

42 closure_1_state = casadi.SX.sym('cls_1_q', 3)
43

44 cls_q_1 = hom_rotation(y_axis_rotation_matrix(closure_1_state[0]))
45 cls_l_1 = hom_translation_matrix(t_x=l_1)
46 cls_qs_2 = hom_rotation(y_axis_rotation_matrix(closure_1_state[1]))
47 cls_a_1 = hom_translation_matrix(t_x=closure_1_state[2])
48 cls_a_1z = hom_translation_matrix(t_x=a_1_offset)
49 cls_1_trafo = cls_q_1 * cls_l_1 * cls_qs_2 * cls_a_1 * cls_a_1z
50

51 cls_1_trafo_pos = get_translation(cls_1_trafo)
52

53 c_1 = (cls_1_trafo_pos[0]-l_2)**2 + \
(continues on next page)

14 Chapter 1. Features

TriP Documentation, Release 0.9

(continued from previous page)

54 cls_1_trafo_pos[1]**2 + cls_1_trafo_pos[2]**2
55

56

57 def closure_q_to_a_group_1(state: Dict[str, float]):
58 nlp = {'x': closure_1_state[1:], 'f': c_1, 'p': closure_1_state[0]}
59 nlp_solver = casadi.nlpsol('q_to_a', 'ipopt', nlp, opts)
60 solution = nlp_solver(x0=[0, 0], p=[state['q_1']['ry']])
61 sol_vector = np.array(solution['x'])
62 return {'a_1': sol_vector[1]}
63

64

65 def closure_a_to_q_group_1(state: Dict[str, float]):
66 nlp = {'x': closure_1_state[:1], 'f': c_1, 'p': closure_1_state[2]}
67 nlp_solver = casadi.nlpsol('a_to_q', 'ipopt', nlp, opts)
68 solution = nlp_solver(x0=[0, 0], p=[state['a_1']])
69 sol_vector = np.array(solution['x'])
70 return {'q_1': {'ry': sol_vector[0]}}
71

72

73 closure_2_state = casadi.SX.sym('cls_2_q', 3)
74

75 cls_q_2 = hom_rotation(y_axis_rotation_matrix(closure_2_state[0]))
76 cls_l_4 = hom_translation_matrix(t_x=l_4)
77 cls_qs_4 = hom_rotation(y_axis_rotation_matrix(closure_2_state[1]))
78 cls_a_2 = hom_translation_matrix(t_x=closure_2_state[2])
79 cls_a_2z = hom_translation_matrix(t_x=a_1_offset)
80 cls_2_trafo = cls_q_2 * cls_l_4 * cls_qs_4 * cls_a_2 * cls_a_2z
81

82 cls_2_trafo_pos = get_translation(cls_1_trafo)
83

84 c_2 = (cls_2_trafo_pos[0]+l_3)**2 + \
85 cls_2_trafo_pos[1]**2 + cls_2_trafo_pos[2]**2
86

87

88 def closure_q_to_a_group_1(state: Dict[str, float]):
89 nlp = {'x': closure_2_state[1:], 'f': c_2, 'p': closure_2_state[0]}
90 nlp_solver = casadi.nlpsol('q_to_a', 'ipopt', nlp, opts)
91 solution = nlp_solver(x0=[0, 0], p=[state['q_1']['ry']])
92 sol_vector = np.array(solution['x'])
93 return {'a_2': sol_vector[1]}
94

95

96 def closure_a_to_q_group_1(state: Dict[str, float]):
97 nlp = {'x': closure_2_state[:1], 'f': c_2, 'p': closure_2_state[2]}
98 nlp_solver = casadi.nlpsol('a_to_q', 'ipopt', nlp, opts)
99 solution = nlp_solver(x0=[0, 0], p=[state['a_1']])

100 sol_vector = np.array(solution['x'])
101 return {'q_2': {'ry': sol_vector[0]}}
102

1.1. How TriP models Robots 15

TriP Documentation, Release 0.9

Defining virtual chains

In the vast majority of cases, the specification of the virtual chain is straightforward. One simply uses a single chain of
transformations that goes from one end of the group to the other. However, in some cases, this can lead to unintended
or suboptimal results.

As a simple example of this problem, think of the excavator arm from above. Assuming that it had a spherical joint at
the elbow, the system would still not be able to move any differently. However, the virtual open chain which neglects
the hydraulic cylinders would suddenly behave much differently.

An inverse kinematics solver might now try to find open chain configurations that are not possible with the full mech-
anism.

Warning: Since TriP currently does not support Joint limits, it can not detect which open chain configurations are
not possible. This can lead to solvers failing outright.

This problem can be avoided by designing a custom virtual open chain. In the case of the excavator this is very simple,
just substitute the spherical joint with a revolute joint. For more complicated robots this might be more complex, a
general rule of thumb is:

Important: The virtual open chain should offer the same degrees of freedom as the full mechanism. Ideally, the
correspondence between virtual joints and actuated joints should be as simple as possible.

1.1.3 Robots

The Robot class is the centerpiece of TriP, they encapsulate Transormation and KinematicGroup objects of a Robot.
This causes some problems. Groups distinguish between actuated_states and virtual_states while for a transformation
these are the same.´

Important: To solve this problem Transformations are internally converted into groups. The actuated state of a trans-
formation follows the naming convention NAME_KEY where NAME is the name of the Transformation and KEY is
a key for the state of the transformation. The full actuated state of a robot can be returned using the get_actuated_state
method.

For robots without closed chains, both the virtual_state and the actuated_state can be used interchangeably. We advise
nevertheless to use the actuated_state whenever possible as a general convention.

End Effectors

The Robot class offers the same functionality as the Group object at a more abstract level. Additionally, it supports
end effectors. In robotics, an end effector is conventionally a device at the end of a robotics arm which interacts with
the environment. Kinematically and more, generally speaking, it is a coordinate frame whose position and orientation
is of special interest. This might be because it holds a tool, or because it specifies a foot position or maybe it just holds
a sensor.

In any case, end effectors are coordinate frames for which we might want to compute forward or inverse kinematics.
Since for open chains frames and the transformations leading to them are synonymous an effectors can be any frame
resulting from a transformation of a robots virtual_chain. Remember since the robot is comprised of groups it’s virtual
open chain is a concatenation of the virtual_chains of each group.

16 Chapter 1. Features

TriP Documentation, Release 0.9

The Robot class offers the get_endeffectors method for ease of use which returns the names of all possible end effector
frames.

Symbolic Representations

The robot class is capable of generating symbolic representations of end effector kinematics. This means it can describe
the state of and end effector frame as a mathematical function 𝑝(𝑞) whose input is the virtual state 𝑞.

This is handy for several reasons:

• It allows for quick calculations of the end effector position without needing matrix multiplication at every step

• It allows automatic mathematical derivation to calculate the Jacobi matrix and generally analyze the virtual chain

• It allows the setup of mathematical solvers which can compute the inverse kinematics for a given end effector.

Generally, the first point is not needed as the forward kinematics is quite fast on its own and can be called using the
forward_kinematic function given an end effector and a robot object. However, if speed is the issue, the casadi library
which is used for the symbolic representation is capable of generating C code from such a function object. This can be
used to further speed up code executions or calculate the kinematics on an embedded device.

The main advantages, however, are the second and the third points which are related seeing that most numerical op-
timization requires the computation of gradients. Casadi features fast algorithmic differentiation (a powerful hybrid
between numerical differentiation and analytic differentiation used in many machine learning solutions). This allows
the fast calculations of gradients and Jacobi matrices.

As such TriP can also be used to do kinematic analysis for open chains. Note that it does not support closed chains
because the mapping functions don’t have to be casadi objects. However if one does use casadi like functions TriP can
also be used to analyze hybrid chains.

In general, the symbolic representation returns a casadi object on which the full`casadi feature pallet can be used. This
includes the setup of numerical solvers which are used to calculate the inverse kinematics.

Forward kinematics

The calculation of forward kinematics is done using the forward_kinematic function. The general procedure can be
seen in the image below:

The forward kinematics of the virtual_chain are in this case calculated by multiypling the transformation matrices of
the virtual_chain together. This results in a 4x4 transformation matrix describing the state of the end effector.

1.1. How TriP models Robots 17

TriP Documentation, Release 0.9

1.1.4 Solvers

Solvers are objects which calculate the inverse kinematics for a given Robot and end effector. The reason they are not
functions like the forward_kinematic functions is that the generation and setup of a casadi solver object is the biggest
performance bottleneck. To circumvent this, solver classes generate and store casadi solver objects for a given robot
and end effector. Using casadis framework it is then easily possible to implement different types of solving algorithms.

TriP currently only has one type of solver object called SimpleInvKinSolver which will be further explained shortly.
However it is also possible to write your own solver classes, all one has to do is implement the solve_virtual and
solve_actuated functions which return the virtual and actuated state respectively given a desired end effector state and
an optional initial solver tip.

SimpleInvKinSolver

The SimpleInvKinSolver is as the name implies a rudimentary solver whose general procedure can be seen in the
image below:

First, the system tries to find a virtual state which results in the end effector being as close as possible to the target.
This is done using a casadis NLP solver using auto-generated jacobian and hessian matrices.

In the next step, the system calls the internal mapping functions of the robot to convert the virtual_state into an actu-
ated_state.

Warning: This sequential approach is not capable of handling virtual_states for which no actuate_state can be
found. In this case, the solver simply fails. To prevent this, suitable starting values for the solver can be supplied
and the virtual_chain can be set up to minimize the chance of this happening. See section Defining virtual chains
for reference.

18 Chapter 1. Features

TriP Documentation, Release 0.9

1.2 Getting Started

The current release of the project can always be found on the python package index PyPi . However, since another
python package is already called trip, the package is called trip_kinematics. The current stable release can be installed
using:

pip install trip_kinematics

Alternatively, the current development version can be downloaded using Github:

git clone https://github.com/TriPed-Robot/TriP
cd TriP
pip install src/

For more information on how to use the library once installed visit the Tutorials or read ‘How TriP models Robots’.

1.3 Tutorials

1.3.1 Building a Robot Model

Before TriPs functionality can be used on a robot, it first has to be build within TriP. This Tutorial will show how to
build the TriPed robot shown below:

Here each leg was highlighted in a different color. Since all legs are identicall, this tutorial will start with a single leg.
More information about the triped legs can be found here .

The first step in setting up a robot is identifying the groups and transformations. TriP uses Groups to model closed
kinematic chains. These are structures where multiple moving parts converge in a single location forming one or more
loops. Some examples can be seen down below:

These closed chains will either be connected directly to each other or using a series of other moving parts. Such a series
is called a open kinematic chain. Open Kinematic chains are handled using a series of transformations.

In the case of the TriPed the following chains can be identified:

1.2. Getting Started 19

https://en.wikipedia.org/wiki/Quaternion
https://triped-robot.github.io/docs/robot/
https://triped-robot.github.io/docs/legs/

TriP Documentation, Release 0.9

This in turn means that the leg of the TriPed contains one kinematic group and a number of transformations representing
the open chain.

Once each group has been identified the group construction worklow goes like this:

20 Chapter 1. Features

TriP Documentation, Release 0.9

Building open chains

Groups handle closed chains by abstracting them into a virtual open chains that models how group moves combined
with two mapping functions from these virtual joints to the actual actuated joints and back. This means that for both
the open and the closed chain, a chain has to be build. The precise transformations depend on the type of robot and its
conventions. The kinematic transformations of the TriPed are described here: here . This leads to the following virtual
open chain:

1 from math import radians
2 from typing import Dict
3 from casadi import SX, nlpsol, vertcat
4 import numpy as np
5

6

7 from trip_kinematics.KinematicGroup import KinematicGroup
8 from trip_kinematics.Transformation import Transformation
9 from trip_kinematics.Robot import Robot

10 from trip_kinematics.Utility import hom_translation_matrix, x_axis_rotation_matrix
11 from trip_kinematics.Utility import y_axis_rotation_matrix, z_axis_rotation_matrix
12 from trip_kinematics.Utility import hom_rotation, get_translation
13 a_ccs_p_trans = Transformation(name='A_ccs_P_trans',
14 values={'tx': 0.265, 'tz': 0.014})
15 a_ccs_p_rot = Transformation(name='gimbal_joint',
16 values={'rx': 0, 'ry': 0, 'rz': 0},
17 state_variables=['rx', 'ry', 'rz'],
18 parent=a_ccs_p_trans)

And the corresponding transformations for the open chain:

1 a_p_ll = Transformation(name='A_P_LL',
2 values={'tx': 1.640, 'tz': -0.037, },
3 parent=closed_chain)
4 a_ll_zero = Transformation(name='zero_angle_convention',
5 values={'ry': radians(-3)},
6 parent=a_p_ll)
7 a_ll_zero_ll_joint = Transformation(name='extend_joint',
8 values={'ry': 0},
9 state_variables=['ry'],

10 parent=a_ll_zero)
11 a_ll_joint_fcs = Transformation(name='A_LL_Joint_FCS',
12 values={'tx': -1.5},
13 parent=a_ll_zero_ll_joint)

Warning: Note that the second code block references the closed chain as its parent. Since this group is not yet
build the code above will encounter errors. In Practice the close chain group first has to be built. The correct
order of this code can be seen [here](https://github.com/TriPed-Robot/trip_kinematics/blob/main/src/trip_robots/
triped_leg.py).

Note that both chains are made up of transformations without state_variables. Such transformations are ‘static’ and
dont represent a joint. It is possible to construct open chains without such transformations (see the denavit hartenberg
convention for example). In practice however they are handy to specify the position of a joint at a specified angle.
This allows the joint angles to be interpretable. This can be seen with the a_ll_zero transformation. It ensures that a
extend_joint angle corresponds to the foot of the leg being completely retracted.

1.3. Tutorials 21

https://triped-robot.github.io/docs/kinematics/
https://github.com/TriPed-Robot/trip_kinematics/blob/main/src/trip_robots/triped_leg.py
https://github.com/TriPed-Robot/trip_kinematics/blob/main/src/trip_robots/triped_leg.py
https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters/

TriP Documentation, Release 0.9

Create Mappings

For the kinematic group a mapping from the actuated swing_joints to the virtual gimbal joint have to be provided.
These joints can be seen down below:

The mapping between these joints can be computet by solving a geometric closing equation. As pictured above, the tip
𝑥𝑖 the output lever connected to the actuated joints 𝑖 alwas intersects the sphere at position 𝑐𝑖 where 𝑖 is either 1 or 2.

Mathematically this can be described using:
2∑︁

𝑖=1

||(𝑐𝑖(𝑟𝑥, 𝑟𝑦, 𝑟𝑧𝑣)− 𝑝
𝑖
(𝑟𝑧𝑎𝑖))

𝑇 (𝑐𝑖(𝑟𝑥, 𝑟𝑦, 𝑟𝑧
𝑣)− 𝑝𝑖(𝑟𝑧

𝑎
𝑖))− 𝑟2||2 = 0

Where 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 are the rotation around the x, y and z axis and the suberscript :math:`v,~a`denotes the virtual and
actuated state respectively.

The virtual_to_actuated and actuated_to_virtual mappings can now be defined as the virtual or actuated state that solves
the closure equation assuming the other state as a fixed value. This can be done using casadis nonelinear programming
solver. The final code can be seen down below:

1 def sphere_centers(r_x, r_y, r_z):
2 """Generates the centers of the spheres used for the geometric closure equation
3

4 Args:
5 r_x (float): gimbal joint state rx
6 r_y (float): gimbal joint state ry
7 r_z (float): gimbal joint state rz
8

9 Returns:
10 numpy array, numpy array: Two 3D arrays containing the sphere centers
11 """
12 a_ccs_p_trans_m = hom_translation_matrix(

(continues on next page)

22 Chapter 1. Features

TriP Documentation, Release 0.9

(continued from previous page)

13 t_x=0.265, t_y=0, t_z=0.014)
14 a_ccs_p_rot_m = hom_rotation(x_axis_rotation_matrix(r_x) @
15 y_axis_rotation_matrix(r_y) @
16 z_axis_rotation_matrix(r_z))
17 a_p_sph_1_2 = hom_translation_matrix(
18 t_x=0.015, t_y=0.029, t_z=-0.0965)
19 a_p_sph_2_2 = hom_translation_matrix(
20 t_x=0.015, t_y=-0.029, t_z=-0.0965)
21

22 a_ccs_ = a_ccs_p_trans_m @ a_ccs_p_rot_m
23 a_c1 = a_ccs_ @ a_p_sph_1_2
24 a_c2 = a_ccs_ @ a_p_sph_2_2
25

26 return get_translation(a_c1), get_translation(a_c2)
27

28

29 def intersection_left(theta):
30 """calculates the desired sphere intersection point based on the left swing joint
31

32 Args:
33 theta (float): angle of the left swing joint
34

35 Returns:
36 numpy array: the sphere intersection
37 """
38 a_ccs_lsm_trans = hom_translation_matrix(
39 t_x=0.139807669447128, t_y=0.0549998406976098, t_z=-0.051)
40 a_ccs_lsm_rot = hom_rotation(z_axis_rotation_matrix(radians(-345.0)))
41 a_mcs_1_joint = hom_rotation(z_axis_rotation_matrix(theta))
42 a_mcs_1_sp_1_1 = hom_translation_matrix(
43 t_x=0.085, t_y=0, t_z=-0.0245)
44

45 a_ccs_sp_1_1 = a_ccs_lsm_trans @ a_ccs_lsm_rot @ a_mcs_1_joint @ a_mcs_1_sp_1_1
46 return get_translation(a_ccs_sp_1_1)
47

48

49 def intersection_right(theta):
50 """calculates the desired sphere intersection point based on the right swing joint
51

52 Args:
53 theta (float): angle of the right swing joint
54

55 Returns:
56 numpy array: the sphere intersection
57 """
58 a_ccs_rsm_tran = hom_translation_matrix(
59 t_x=0.139807669447128, t_y=-0.0549998406976098, t_z=-0.051)
60 a_ccs_rsm_rot = hom_rotation(z_axis_rotation_matrix(radians(-15.0)))
61 a_mcs_2_joint = hom_rotation(z_axis_rotation_matrix(theta))
62 a_mcs_2_sp_2_1 = hom_translation_matrix(
63 t_x=0.085, t_y=0, t_z=-0.0245)
64

(continues on next page)

1.3. Tutorials 23

TriP Documentation, Release 0.9

(continued from previous page)

65 a_ccs_sp_2_1 = a_ccs_rsm_tran @ a_ccs_rsm_rot @ a_mcs_2_joint @ a_mcs_2_sp_2_1
66 return get_translation(a_ccs_sp_2_1)
67

68

69 def swing_to_gimbal(state: Dict[str, float], tips: Dict[str, float] = None):
70 """Actuated to virtual state mapping for the TriPed legss closed subchain
71

72 Args:
73 state (Dict[str, float]): actuated state of the TriPed leg closed subchain
74 tips (Dict[str, float], optional): Initial state for the closure equation solver.
75 Defaults to None in which case [0,0,0] is␣

→˓used.
76

77 Returns:
78 Dict[str, Dict[str, float]]: the correspdonding state of the virtual chain
79 """
80 x_0 = [0, 0, 0]
81 if tips:
82 x_0[2] = tips['rx']
83 x_0[3] = tips['ry']
84 x_0[4] = tips['rz']
85

86 nlp = {'x': virtual_state, 'f': closing_equation, 'p': actuated_state}
87 nlp_solver = nlpsol('swing_to_gimbal', 'ipopt', nlp, opts)
88 solution = nlp_solver(x0=x_0,
89 p=[state['swing_left'], state['swing_right']])
90 sol_vector = np.array(solution['x'])
91 return {'gimbal_joint': {'rx': sol_vector[0][0],
92 'ry': sol_vector[1][0],
93 'rz': sol_vector[2][0]}}
94

95

96 def gimbal_to_swing(state: Dict[str, Dict[str, float]], tips: Dict[str, float] = None):
97 """Virtual to actuated state mapping for the TriPed legss closed subchain
98

99 Args:
100 state (Dict[str, Dict[str, float]]): virtual state of the TriPed leg closed␣

→˓subchain
101 tips (Dict[str, float], optional): Initial state for the closure equation solver.
102 Defaults to None in which case [0,0] is used.
103

104 Returns:
105 Dict[str, float]: the correspdonding actuated state
106 """
107 x_0 = [0, 0]
108 continuity = 0
109 if tips:
110 x_0[0] = tips['swing_left']
111 x_0[1] = tips['swing_right']
112 continuity = (x_0-actuated_state).T @ (x_0-actuated_state)
113

114 nlp = {'x': actuated_state, 'f': closing_equation+continuity, 'p': virtual_state,

(continues on next page)

24 Chapter 1. Features

TriP Documentation, Release 0.9

(continued from previous page)

115 'g': actuated_state[0]*actuated_state[1]}
116 nlp_solver = nlpsol('gimbal_to_swing', 'ipopt', nlp, opts)
117 solution = nlp_solver(x0=x_0,
118 p=[state['gimbal_joint']['rx'],
119 state['gimbal_joint']['ry'],
120 state['gimbal_joint']['rz']],
121 ubg=0)
122 sol_vector = np.array(solution['x'])
123 return {'swing_left': sol_vector[0][0], 'swing_right': sol_vector[1][0]}
124

125

126 theta_left = SX.sym('theta_left')
127 theta_right = SX.sym('theta_right')
128 gimbal_x = SX.sym('gimbal_x')
129 gimbal_y = SX.sym('gimbal_y')
130 gimbal_z = SX.sym('gimbal_z')
131

132 virtual_state = vertcat(gimbal_x, gimbal_y, gimbal_z)
133 actuated_state = vertcat(theta_left, theta_right)
134

135 opts = {'ipopt.print_level': 0, 'print_time': 0}
136 RADIUS = 0.11
137 c1, c2 = sphere_centers(r_x=gimbal_x, r_y=gimbal_y, r_z=gimbal_z)
138 closing_equation = (((c1-intersection_left(theta_right)).T @ (c1-intersection_left(theta_

→˓right)) -
139 RADIUS**2)**2 +
140 ((c2-intersection_right(theta_left)).T @ (c2-intersection_

→˓right(theta_left)) -
141 RADIUS**2)**2)

Building the group

Using both the mappings and the virtual open chain, the group can be build:

1 closed_chain = KinematicGroup(name='closed_chain',
2 virtual_chain=[a_ccs_p_trans, a_ccs_p_rot],
3 actuated_state={
4 'swing_left': 0, 'swing_right': 0},
5 actuated_to_virtual=swing_to_gimbal,
6 virtual_to_actuated=gimbal_to_swing)

Note that the closed chain specifies no parent since it is located directly at the robots base and the open chain specifies
no mappings since these are autogenerated.

1.3. Tutorials 25

TriP Documentation, Release 0.9

Combining groups to a robot

The last step is to combine the group and transformations into a robot object:

triped_leg = Robot([closed_chain,a_p_ll,a_ll_zero,a_ll_zero_ll_joint,a_ll_joint_fcs])

Building the complete robot

Since the TriPed has three legs, the above process has to be repeated three times. Each time the joints and actuated
state need their own unique names.

Since this would be tedious to do by hand, a function can be written that returns the full transformation of a single leg.
This functions then follows the above steps, only appending the initial kinematic group with a transformation to the
start position of each leg.

This function can be seen here:

1 def leg_model(leg_number: str):
2 """Helper function that constructs each TriPed leg as a list of Transformations.
3

4 Args:
5 leg_number (str): The leg number which determins the orientation.
6 Acceptable values [0,1,2]
7 """
8 def rename_swing_to_gimbal(swing: Dict[str, float], tips: Dict[str, float] = None):
9 swing = deepcopy(swing)

10 swing['swing_left'] = swing[leg_name+'swing_left']
11 swing['swing_right'] = swing[leg_name+'swing_right']
12 del swing[leg_name+'swing_left']
13 del swing[leg_name+'swing_right']
14

15 if tips is not None:
16 tips = deepcopy(tips)
17 tips['gimbal_joint'] = tips[leg_name+'gimbal_joint']
18 del tips[leg_name+'gimbal_joint']
19

20 gimbal = swing_to_gimbal(swing, tips)
21

22 gimbal[leg_name+'gimbal_joint'] = gimbal['gimbal_joint']
23 del gimbal['gimbal_joint']
24

25 return gimbal
26

27 def rename_gimbal_to_swing(gimbal: Dict[str, float], tips: Dict[str, float] = None):
28 gimbal = deepcopy(gimbal)
29 gimbal['gimbal_joint'] = gimbal[leg_name+'gimbal_joint']
30 del gimbal[leg_name+'gimbal_joint']
31

32 if tips is not None:
33 tips = deepcopy(tips)
34 tips['swing_left'] = tips[leg_name+'swing_left']
35 tips['swing_right'] = tips[leg_name+'swing_right']
36 del tips[leg_name+'swing_left']

(continues on next page)

26 Chapter 1. Features

TriP Documentation, Release 0.9

(continued from previous page)

37 del tips[leg_name+'swing_right']
38

39 swing = gimbal_to_swing(gimbal, tips)
40

41 swing[leg_name+'swing_left'] = swing['swing_left']
42 swing[leg_name+'swing_right'] = swing['swing_right']
43 del swing['swing_left']
44 del swing['swing_right']
45

46 return swing
47

48 leg_name = 'leg_'+str(leg_number)+'_'
49

50 leg_rotation = Transformation(name=leg_name+'leg_rotation',
51 values={'rz': -1*radians(120)*leg_number})
52 a_ccs_p_trans = Transformation(name=leg_name+'A_ccs_P_trans',
53 values={'tx': 0.265, 'tz': 0.014},
54 parent=leg_rotation)
55 a_ccs_p_rot = Transformation(name=leg_name+'gimbal_joint',
56 values={'rx': 0, 'ry': 0, 'rz': 0},
57 state_variables=['rx', 'ry', 'rz'],
58 parent=a_ccs_p_trans)
59

60 closed_chain = KinematicGroup(name=leg_name+'closed_chain',
61 virtual_chain=[leg_rotation,
62 a_ccs_p_trans, a_ccs_p_rot],
63 actuated_state={
64 leg_name+'swing_left': 0, leg_name+'swing_right':␣

→˓0},
65 actuated_to_virtual=rename_swing_to_gimbal,
66 virtual_to_actuated=rename_gimbal_to_swing)
67

68 a_p_ll = Transformation(name=leg_name+'A_P_LL',
69 values={'tx': 1.640, 'tz': -0.037, },
70 parent=closed_chain)
71 a_ll_zero = Transformation(name=leg_name+'zero_angle_convention',
72 values={'ry': radians(-3)},
73 parent=a_p_ll)
74 a_ll_zero_ll_joint = Transformation(name=leg_name+'extend_joint',
75 values={'ry': 0},
76 state_variables=['ry'],
77 parent=a_ll_zero)
78 a_ll_joint_fcs = Transformation(name=leg_name+'A_LL_Joint_FCS',
79 values={'tx': -1.5},
80 parent=a_ll_zero_ll_joint)
81

82 return [closed_chain, a_ll_zero_ll_joint, a_ll_joint_fcs, a_p_ll, a_ll_zero]

The final TriPed robot can then be build using:

1 triped = Robot(leg_model(0)+leg_model(1)+leg_model(2))

1.3. Tutorials 27

TriP Documentation, Release 0.9

1.3.2 Importing URDF Files

The Universal Robot Description Format (URDF) is used to describe a variety of serial robot mechanisms. Trip includes
a URDF parser that allows the importation of alist of transfomrations from a URDF file

It can be used directly after importing the TriP library by calling the function trip_kinematics.from_urdf with the path
to the URDF file as the argument. Note that the function returns a list of Transformations, which you probably want to
create a Robot from in most cases:

transformations_list = trip_kinematics.urdf_parser.from_urdf(urdf_path)
robot = Robot(transformations_list)

This means you can also add other Transformations manually on top of those specified in the URDF file, if required.

Also note that the parser includes defaults for certain values if the corresponding URDF tag is missing, specifically:

• <origin> defaults to <origin xyz=”0 0 0” rpy=”0 0 0” />.

– (The same also applies if only one of xyz and rpy is specified, with the omitted value defaulting to “0 0 0”)

• <axis> defaults to <axis xyz=”0 0 1” />

1.4 Code Documentation

class trip_kinematics.Utility.Rotation(quat)
Represents a 3D rotation.

Can be initialized from quaternions, rotation matrices, or Euler angles, and can be represented as quaternions.
Reimplements a (small) part of the scipy.spatial.transform.Rotation API and is meant to be used for converting
between rotation representations to avoid depending on SciPy. This class is not meant to be instantiated directly
using __init__; use the methods from_[representation] instead.

as_quat(scalar_first=True)
Represents the object as a quaternion.

Parameters scalar_first (bool, optional) – Represent the quaternion in scalar-first (w,
x, y, z) or scalar-last (x, y, z, w) format. Defaults to True.

Returns Quaternion.

Return type np.array

classmethod from_euler(seq, rpy, degrees=False)
Creates a :py:class`Rotation` object from Euler angles.

Parameters
• seq (str) – Included for compatibility with the SciPy API. Required to be set to ‘xyz’.

• rpy (np.array) – Euler angles.

• degrees (bool, optional) – True for degrees and False for radians. Defaults to False.

Returns Rotation object.

Return type Rotation

28 Chapter 1. Features

TriP Documentation, Release 0.9

classmethod from_matrix(matrix)
Creates a :py:class`Rotation` object from a rotation matrix.

Uses a very similar algorithm to scipy.spatial.transform.Rotation.from_matrix(). See https://github.com/
scipy/scipy/blob/22f66bbd83867459f1491abf01b860b5ef4e026e/ scipy/spatial/transform/_rotation.pyx

Parameters matrix (np.array) – Rotation matrix.

Returns Rotation object.

Return type Rotation

classmethod from_quat(xyzw, scalar_first=True)
Creates a :py:class`Rotation` object from a quaternion.

Parameters
• xyzw (np.array) – Quaternion.

• scalar_first (bool, optional) – Whether the quaternion is in scalar-first (w, x, y, z)
or scalar-last (x, y, z, w) format. Defaults to True.

Returns Rotation object.

Return type Rotation

trip_kinematics.Utility.get_rotation(matrix)
Returns the 3x3 rotation matrix of the :py:class`TransformationMatrix`

Returns The 3x3 rotation matrix

Return type numpy.array

trip_kinematics.Utility.get_translation(matrix)
Returns the translation of the :py:class`TransformationMatrix`

Returns The 3 dimensional translation

Return type numpy array

trip_kinematics.Utility.hom_rotation(rotation_matrix)
Converts a 3x3 rotation matrix into a 4x4 homogenous rotation mtrix

Parameters rotation_matrix (numpy.array) – A 3x3 rotation matrix

Returns A 4x4 homogenous rotation matrix

Return type numpy.array

trip_kinematics.Utility.hom_translation_matrix(t_x=0, t_y=0, t_z=0)
Returns a homogenous translation matrix

Parameters
• t_x (int, optional) – Translation along the x axis. Defaults to 0.

• t_y (int, optional) – Translation along the y axis. Defaults to 0.

• t_z (int, optional) – Translation along the z axis. Defaults to 0.

Returns A 4x4 homogenous translation matrix

Return type numpy.array

1.4. Code Documentation 29

https://github.com/scipy/scipy/blob/22f66bbd83867459f1491abf01b860b5ef4e026e/
https://github.com/scipy/scipy/blob/22f66bbd83867459f1491abf01b860b5ef4e026e/

TriP Documentation, Release 0.9

trip_kinematics.Utility.identity_transformation()

Returns a 4x4 identity matix

Returns a 4x4 identity matrix

Return type numpy.array

trip_kinematics.Utility.quat_rotation_matrix(q_w, q_x, q_y, q_z)→ <Mock name='mock.array'
id='139654843560400'>

Generates a 3x3 rotation matrix from q quaternion

Parameters
• q_w (float) – part of a quaternion [q_w,q_x,q_y,q_z]

• q_x (float) – part of a quaternion [q_w,q_x,q_y,q_z]

• q_y (float) – part of a quaternion [q_w,q_x,q_y,q_z]

• q_z (float) – part of a quaternion [q_w,q_x,q_y,q_z]

Returns A 3x3 rotation matrix

Return type numpy.array

trip_kinematics.Utility.x_axis_rotation_matrix(theta)
Generates a matrix rotating around the x axis

Parameters theta (float) – The angle of rotation in rad

Returns A 3x3 rotation matrix

Return type numpy.array

trip_kinematics.Utility.y_axis_rotation_matrix(theta)
Generates a matrix rotating around the y axis

Parameters theta (float) – The angle of rotation in rad

Returns A 3x3 rotation matrix

Return type numpy.array

trip_kinematics.Utility.z_axis_rotation_matrix(theta)
Generates a matrix rotating around the z axis

Parameters theta (float) – The angle of rotation in rad

Returns A 3x3 rotation matrix

Return type numpy.array

class trip_kinematics.Transformation.Transformation(name: str, values: Dict[str, float],
state_variables: Optional[List[str]] = None,
parent=None)

Initializes the Transformation class.

Parameters
• name (str) – The unique name identifying the Transformation. No two Transformation

objects of a :py:class`Robot` should have the same name

• values (Dict[str, float]) – A parametric description of the transformation.

30 Chapter 1. Features

TriP Documentation, Release 0.9

• state_variables (List[str], optional) – This list describes which state variables are
dynamically changable. This is the case if the Transformation represents a joint. Defaults
to [].

Raises ValueError – A dynamic state was declared that does not correspond to a parameter declared
in values.

add_children(child: str)

Adds the name of a KinematicGroup or Transformation as a child.

Parameters child (str) – the name of a KinematicGroup or Transformation

static get_convention(state: Dict[str, float])

Returns the connvention which describes how the matrix of a Transformation is build from its state.

Parameters state (Dict[str, float]) – :py:attr:’state’

Raises
• ValueError – “Invalid key.” If the dictionary kontains keys that dont correspond to a

parameter of the transformation.

• ValueError – “State can’t have euler angles and quaternions!” If the dictionary contains
keys correspondig to multiple mutually exclusive conventions.

Returns A string describing the convention

Return type [type]

get_name()

Returns the _name of the Transformation

Returns a copy the _name attribute

Return type str

get_state()

Returns a copy of the _state attribute of the Transformation object.

Returns a copy of the _state

Return type Dict[str,float]

get_transformation_matrix()

Returns a homogeneous transformation matrix build from the state and constants

Raises RuntimeError – If the convention used in state is not supported. Should normally be
catched during initialization.

Returns
A transformation matrix build using the parameters of the Transformation state

Return type [type]

1.4. Code Documentation 31

TriP Documentation, Release 0.9

set_state(state: Dict[str, float])
Sets the state of the Transformation object.

Parameters state (Dict[str, float]) – Dictionary with states that should be set. Does not
have to be the full state.

Raises KeyError – If a key in the argument is not valid state parameter name.

trip_kinematics.Transformation.array_find(arr, obj)→ int

A helpher function which finds the index of an object in an array. Instead of throwing an error when no in-
dex can be found it returns -1.

Parameters
• arr – the array to be searched

• obj – the object whose index is to be found.

Returns The index of obj in the array. -1 if the object is not in the array

Return type int

class trip_kinematics.KinematicGroup.KinematicGroup(name: str, virtual_chain:
List[trip_kinematics.Transformation.Transformation],
actuated_state: Dict[str, float],
actuated_to_virtual: Callable,
virtual_to_actuated: Callable,
act_to_virt_args=None, virt_to_act_args=None,
parent=None)

Initializes a KinematicGroup object.

Parameters
• name (str) – The unique name identifying the group. No two KinematicGroup objects of

a :py:class`Robot` should have the same name

• virtual_chain (List[Transformation]) – A list of Transformation objects forming
a serial Kinematic chain.

• actuated_state (List[Dict[str, float]]) – The State of the Groups actuated joints.

• actuated_to_virtual (Callable) – Maps the actuated_state to the virtual_state
of the virtual_chain.

• virtual_to_actuated (Callable) – Maps the virtual_state of the virtual_chain
to the actuated_state.

• act_to_virt_args ([type], optional) – Arguments that can be passed to
actuated_to_virtual during the initial testing of the function. Defaults to None.

• virt_to_act_args ([type], optional) – Arguments that can be passed to
virtual_to_actuated during the initial testing of the function. Defaults to None.

• parent (Union(Transformation,KinematicGroup), optional) – The transforma-
tion or group preceding the KinematicGroup. Defaults to None.

Raises
• ValueError – ‘Error: Actuated state is missing. You provided a mapping to actuate the

group but no state to be actuated.’ if there is no actuated_state despite a mapping being
passed

32 Chapter 1. Features

TriP Documentation, Release 0.9

• ValueError – ‘Error: Only one mapping provided. You need mappings for both
ways. Consider to pass a trivial mapping.’ if either actuated_to_virtual or
virtual_to_actuated was not set despite providing a actuated_state.

• ValueError – ‘Error: Mappings missing. You provided an actuated state but no mappings.
If you want a trivial mapping you don’t need to pass an actuated state. Trip will generate one
for you.’ if both actuated_to_virtual and virtual_to_actuated were not set despite
providing a actuated_state.

• RuntimeError – “actuated_to_virtual does not fit virtual state” if the
actuated_to_virtual function does not return a valid virtual_state dictionary.

• RuntimeError – “virtual_to_actuated does not fit actuated state” if the
virtual_to_actuated function does not return a valid actuated_state dictionary.

add_children(child: str)

Adds the name of a KinematicGroup or Transformation as a child.

Parameters child (str) – the name of a KinematicGroup or Transformation

get_actuated_state()

Returns a copy of the actuated_state attribute of the KinematicGroup object.

Returns a copy of the actuated_state

Return type Dict[str,float]

get_name()

Returns the _name of the KinematicGroup

Returns the _name attribute

Return type str

get_transformation_matrix()

Calculates the full transformationmatrix from the start of the virtual chain to its endeffector.

Returns
The homogenous transformation matrix from the start of the virtual chain to its endeffec-

tor.

Return type array

get_virtual_chain()

Returns a copy of the _virtual_chain attribute of a KinematicGroup object.

Returns a copy of the _virtual_chain

Return type Dict[str,Transformation]

get_virtual_state()

Returns a copy of the virtual_state attribute of the KinematicGroup object.

Returns a copy of the virtual_state

1.4. Code Documentation 33

TriP Documentation, Release 0.9

Return type Dict[str,Dict[str,float]]

static object_list_to_key_lists(object_lst)
Helper function which transforms dictionary into list of keys.

Parameters object_lst (Dict) – The dictionary to be transformed

Returns A list of keys

Return type list(str)

pass_arg_a_to_v(argv)
Allows arguments to be passed the actuated_to_virtual mapping.

Parameters argv ([type]) – arguments to be passed.

pass_arg_v_to_a(argv)
Allows arguments to be passed the virtual_to_actuated mapping.

Parameters argv ([type]) – arguments to be passed.

set_actuated_state(state: Dict[str, float])

Sets the actuated_state of the Group and automatically updates the corresponding virtual_state.

Parameters state (Dict[str, float]) – A dictionary containing the members of
actuated_state that should be set.

Raises
• RuntimeError – if all Transformation objects of _virtual_chain are static.

• ValueError – if the state to set is not part of keys of actuated_state

set_virtual_state(state: Dict[str, Dict[str, float]])

Sets the virtual_state of the Group and automatically updates the corresponding actuated_state.

Parameters state (Dict[str,Dict[str, float]]) – A dictionary containing the members
of virtual_state that should be set. The new values need to be valid state for the state of
the joint.

Raises
• RuntimeError – if all Transformation objects of _virtual_chain are static.

• ValueError – if the state to set is not part of keys of virtual_state

class trip_kinematics.KinematicGroup.OpenKinematicGroup(name: str, virtual_chain:
List[trip_kinematics.Transformation.Transformation],
parent=None)

A subclass of the KinematicGroup that assumes that all states of the virtual_chain are actuated and auto-
matically generates mappings. Typically only used internally by the :py:class`Robot` class to convert
:py:class`Transformation` objects to :py:class`KinematicGroup`s.

Parameters
• name (str) – The unique name identifying the group. No two KinematicGroup objects of

a :py:class`Robot` should have the same name

34 Chapter 1. Features

TriP Documentation, Release 0.9

• virtual_chain (List[Transformation]) – A list of Transformation objects forming
a serial Kinematic chain.

• parent (Union(Transformation,KinematicGroup), optional) – The transforma-
tion or group preceding the KinematicGroup. Defaults to None.

class trip_kinematics.Robot.Robot(kinematic_chain:
List[trip_kinematics.KinematicGroup.KinematicGroup])

A class representing the kinematic model of a robot.

Parameters kinematic_chain (List[KinematicGroup]) – A list of Kinematic Groups and
Transformations which make up the robot. Transformations are automatically converted to
groups

Raises
• KeyError – “More than one robot actuator has the same name! Please give each ac-

tuator a unique name” if there are actuated states with the same names between the
:py:class`KinematicGroup` objects of the :py:class`Robot`

• KeyError – if there are joints with the same names between the :py:class`KinematicGroup`
objects of the :py:class`Robot`

get_actuated_state()

Returns the actuated state of the :py:class`Robot` comprised of the actuated states of the individual
:py:class`KinematicGroup`.

Returns combined actuated state of all :py:class`KinematicGroup` objects.

Return type Dict[str, float]

get_endeffectors()

Returns a list of possible endeffectors. These are the names of all KinematicGroup objects. Since
Transformations are internally converted to Groups, this includes the names of all Transformations.

Returns list of possible endeffectors.

Return type list(str)

get_groups()

Returns a dictionary of the py:class`KinematicGroup` managed by the :py:class`Robot`_ Since
Transformations are internally converted to Groups, this also returns all Transformations.

Returns The dictionary of py:class`KinematicGroup` objects.

Return type Dict[str, KinematicGroup]

get_symbolic_rep(endeffector: str)
This Function returnes a symbolic representation of the virtual chain.

Parameters endeffector (str) – The name of the group whose virtual chain models the de-
sired endeffector

Raises KeyError – If the endeffector argument is not the name of a transformation or group

Returns A 4x4 symbolic casadi matrix containing the transformation from base to endeffector

Return type SX

1.4. Code Documentation 35

TriP Documentation, Release 0.9

get_virtual_state()

Returns the virtual state of the :py:class`Robot` comprised of the virtual states of the individual
:py:class`KinematicGroup`.

Returns
combined virtual state of all :py:class`KinematicGroup` objects.

Return type Dict[str,Dict[str, float]]

pass_group_arg_a_to_v(argv_dict)

Passes optional actuated_to_virtual mapping arguments to :py:class`KinematicGroup` objects of the
robot.

Parameters argv_dict (Dict) – A dictionary containing the mapping arguments keyed with
the :py:class`KinematicGroup` names.

Raises KeyError – If no group with the name given in the argument is part of the robot.

pass_group_arg_v_to_a(argv_dict: Dict)

Passes optional virtual_to_actuated mapping arguments to :py:class`KinematicGroup` objects of the
robot.

Parameters argv_dict (Dict) – A dictionary containing the mapping arguments keyed with
the :py:class`KinematicGroup` names.

Raises KeyError – If no group with the name given in the argument is part of the robot.

set_actuated_state(state: Dict[str, float])
Sets the virtual state of multiple actuated joints of the robot.

Parameters state (Dict[str, float]) – A dictionary containing the members of
__actuated_state that should be set.

set_virtual_state(state: Dict[str, Dict[str, float]])
Sets the virtual state of multiple virtual joints of the robot.

Parameters state (Dict[str,Dict[str, float]]) –

A dictionary containing the members of __virtual_state that should be set.

The new values need to be valid state for the state of the joint.

trip_kinematics.Robot.forward_kinematics(robot: trip_kinematics.Robot.Robot, endeffector)
Calculates a robots transformation from base to endeffector using its current state

Parameters robot (Robot) – The robot for which the forward kinematics should be computed

Returns The Transformation from base to endeffector

Return type numpy.array

class trip_kinematics.Solver.CCDSolver(robot: trip_kinematics.Robot.Robot, endeffector: str,
orientation=False, update_robot=False, options=None)

A Cyclical Coordinate Descent based Kinematic Solver Class that calculates the inverse kinematics for a
given endeffector.

36 Chapter 1. Features

TriP Documentation, Release 0.9

Parameters
• robot (Robot) – The Robot for which the kinematics should be calculated

• endeffector (str) – the name of the endeffector

• orientation (bool, optional) – Boolean flag deciding if inverse kinematics targets also
specify orientation. Defaults to False.

• update_robot (bool, optional) – Boolean flag decding if the inverse kinematics should
immediately update the robot model. Defaults to False.

• options (Dict, optional) – A dictionary containing options for the CCD solver. Possible
keys: stepsize: the step length along the gradient max_iterations: the maximum number of
iterations

before terminating

precision: the minimum amount of joint value change before terminating

solve_actuated(target: <Mock name='mock.array' id='139654843560400'>, initial_tip=None,
mapping_argument=None)

Returns the actuated state needed for the endeffector to be in the target position :param target: The target
state of the endeffector.

Either a 3 dimensional position or a 4x4 homogenous transformation

Parameters
• initial_tip (Dict[str,Dict[str, float]], optional) – Initial state of the

solver. In this case refers to a virtual state. Defaults to None in which case zeros are
used.

• mapping_argument ([type], optional) – Optional arguments for the vir-
tual_to_actuated mappings of the robot. Defaults to None.

Returns The actuated state leading the endeffector to the target position.

Return type Dict(str,float)

solve_virtual(target: <Mock name='mock.array' id='139654843560400'>, initial_tip=None)
Returns the virtual state needed for the endeffector to be in the target position :param target: The target
state of the endeffector.

Either a 3 dimensional position or a 4x4 homogenous transformation

Parameters initial_tip ((Dict(str,Dict(str,float))), optional) – Initial state of
the solver as a virtual state. Defaults to None in which case zeros are used.

Returns
The virtual state leading the endeffector to the target position.

Return type Dict(str,Dict(str,float))

class trip_kinematics.Solver.SimpleInvKinSolver(robot: trip_kinematics.Robot.Robot, endeffector: str,
orientation=False, update_robot=False)

A Simple Kinematic Solver Class that calculates the inverse kinematics for a given endeffector.

Parameters

1.4. Code Documentation 37

TriP Documentation, Release 0.9

• robot (Robot) – The Robot for which the kinematics should be calculated

• endeffector (str) – the name of the endeffector

• orientation (bool, optional) – Boolean flag deciding if inverse kinematics targets also
specify orientation. Defaults to False.

• update_robot (bool, optional) – Boolean flag decding if the inverse kinematics should
immediately update the robot model. Defaults to False.

solve_actuated(target: <Mock name='mock.array' id='139654843560400'>, initial_tip=None,
mapping_argument=None)

Returns the actuated state needed for the endeffector to be in the target position :param target: The target
state of the endeffector.

Either a 3 dimensional position or a 4x4 homogenous transformation

Parameters
• initial_tip (Dict[str,Dict[str, float]], optional) – Initial state of the

solver. In this case refers to a virtual state. Defaults to None in which case zeros are
used.

• mapping_argument ([type], optional) – Optional arguments for the vir-
tual_to_actuated mappings of the robot. Defaults to None.

Returns The actuated state leading the endeffector to the target position.

Return type Dict(str,float)

solve_virtual(target: <Mock name='mock.array' id='139654843560400'>, initial_tip=None)
Returns the virtual state needed for the endeffector to be in the target position :param target: The target
state of the endeffector.

Either a 3 dimensional position or a 4x4 homogenous transformation

Parameters initial_tip ((Dict(str,Dict(str,float))), optional) – Initial state of
the solver as a virtual state. Defaults to None in which case zeros are used.

Returns
The virtual state leading the endeffector to the target position.

Return type Dict(str,Dict(str,float))

38 Chapter 1. Features

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

39

TriP Documentation, Release 0.9

40 Chapter 2. Indices and tables

PYTHON MODULE INDEX

t
trip_kinematics.KinematicGroup, 32
trip_kinematics.Robot, 35
trip_kinematics.Solver, 36
trip_kinematics.Transformation, 30
trip_kinematics.Utility, 28

41

TriP Documentation, Release 0.9

42 Python Module Index

INDEX

A
add_children() (trip_kinematics.KinematicGroup.KinematicGroup

method), 33
add_children() (trip_kinematics.Transformation.Transformation

method), 31
array_find() (in module

trip_kinematics.Transformation), 32
as_quat() (trip_kinematics.Utility.Rotation method), 28

C
CCDSolver (class in trip_kinematics.Solver), 36

F
forward_kinematics() (in module

trip_kinematics.Robot), 36
from_euler() (trip_kinematics.Utility.Rotation class

method), 28
from_matrix() (trip_kinematics.Utility.Rotation class

method), 28
from_quat() (trip_kinematics.Utility.Rotation class

method), 29

G
get_actuated_state()

(trip_kinematics.KinematicGroup.KinematicGroup
method), 33

get_actuated_state() (trip_kinematics.Robot.Robot
method), 35

get_convention() (trip_kinematics.Transformation.Transformation
static method), 31

get_endeffectors() (trip_kinematics.Robot.Robot
method), 35

get_groups() (trip_kinematics.Robot.Robot method),
35

get_name() (trip_kinematics.KinematicGroup.KinematicGroup
method), 33

get_name() (trip_kinematics.Transformation.Transformation
method), 31

get_rotation() (in module trip_kinematics.Utility), 29
get_state() (trip_kinematics.Transformation.Transformation

method), 31

get_symbolic_rep() (trip_kinematics.Robot.Robot
method), 35

get_transformation_matrix()
(trip_kinematics.KinematicGroup.KinematicGroup
method), 33

get_transformation_matrix()
(trip_kinematics.Transformation.Transformation
method), 31

get_translation() (in module
trip_kinematics.Utility), 29

get_virtual_chain()
(trip_kinematics.KinematicGroup.KinematicGroup
method), 33

get_virtual_state()
(trip_kinematics.KinematicGroup.KinematicGroup
method), 33

get_virtual_state() (trip_kinematics.Robot.Robot
method), 36

H
hom_rotation() (in module trip_kinematics.Utility), 29
hom_translation_matrix() (in module

trip_kinematics.Utility), 29

I
identity_transformation() (in module

trip_kinematics.Utility), 29

K
KinematicGroup (class in

trip_kinematics.KinematicGroup), 32

M
module

trip_kinematics.KinematicGroup, 32
trip_kinematics.Robot, 35
trip_kinematics.Solver, 36
trip_kinematics.Transformation, 30
trip_kinematics.Utility, 28

O
object_list_to_key_lists()

43

TriP Documentation, Release 0.9

(trip_kinematics.KinematicGroup.KinematicGroup
static method), 34

OpenKinematicGroup (class in
trip_kinematics.KinematicGroup), 34

P
pass_arg_a_to_v() (trip_kinematics.KinematicGroup.KinematicGroup

method), 34
pass_arg_v_to_a() (trip_kinematics.KinematicGroup.KinematicGroup

method), 34
pass_group_arg_a_to_v()

(trip_kinematics.Robot.Robot method), 36
pass_group_arg_v_to_a()

(trip_kinematics.Robot.Robot method), 36

Q
quat_rotation_matrix() (in module

trip_kinematics.Utility), 30

R
Robot (class in trip_kinematics.Robot), 35
Rotation (class in trip_kinematics.Utility), 28

S
set_actuated_state()

(trip_kinematics.KinematicGroup.KinematicGroup
method), 34

set_actuated_state() (trip_kinematics.Robot.Robot
method), 36

set_state() (trip_kinematics.Transformation.Transformation
method), 31

set_virtual_state()
(trip_kinematics.KinematicGroup.KinematicGroup
method), 34

set_virtual_state() (trip_kinematics.Robot.Robot
method), 36

SimpleInvKinSolver (class in trip_kinematics.Solver),
37

solve_actuated() (trip_kinematics.Solver.CCDSolver
method), 37

solve_actuated() (trip_kinematics.Solver.SimpleInvKinSolver
method), 38

solve_virtual() (trip_kinematics.Solver.CCDSolver
method), 37

solve_virtual() (trip_kinematics.Solver.SimpleInvKinSolver
method), 38

T
Transformation (class in

trip_kinematics.Transformation), 30
trip_kinematics.KinematicGroup

module, 32
trip_kinematics.Robot

module, 35
trip_kinematics.Solver

module, 36
trip_kinematics.Transformation

module, 30
trip_kinematics.Utility

module, 28

X
x_axis_rotation_matrix() (in module

trip_kinematics.Utility), 30

Y
y_axis_rotation_matrix() (in module

trip_kinematics.Utility), 30

Z
z_axis_rotation_matrix() (in module

trip_kinematics.Utility), 30

44 Index

	Features
	How TriP models Robots
	Transformations
	Transformation Descriptions
	Translation with Euler Angles rotation
	Translation with Quaternion rotation

	Transformation trees

	Kinematic Groups
	divide a robot into groups
	actuated state vs virtual state
	Using closure equations
	Defining virtual chains

	Robots
	End Effectors
	Symbolic Representations
	Forward kinematics

	Solvers
	SimpleInvKinSolver

	Getting Started
	Tutorials
	Building a Robot Model
	Building open chains
	Create Mappings
	Building the group
	Combining groups to a robot
	Building the complete robot

	Importing URDF Files

	Code Documentation

	Indices and tables
	Python Module Index
	Index

