

    
      
          
            
  
Welcome to TriP’s documentation!

Have you ever worked with a robot with hydraulic actuators?
Or ever have to compensate bad motors by having them moving the joint via a complicated linkage?

Then you have worked with a hybrid kinematic chain.

TriP is a python library designed to calculate the forward- and inverse-kinematics of such chains.
Since hybrid chains are the most general type of rigid mechanism this includes almost all robots.


Features


	Model any robot (including closed and hybrid chains)


	Generate symbolic representations of forward kinematics


	Compute Jacobian matrices for differential kinematics


	Compute the inverse kinematics of arbitrary rigid mechanisms


	Compute the Inverse Kinematics in position and/or orientation


	Support arbitrary joint types and quaternions


	Includes several ready to use examples (TriPed robot, Excavator Arm)


	TriPs validates the inverse kinematics algorithms with extensive testing using analytic solutions.
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How TriP models Robots

TriP models robots using the Robot class.
A robot object is made up of Transformation and KinematicGroup objects.
The KinematicGroup objects are used to model closed chains.

The following sections will explain the Transformation, KinematicGroup and Robot objects in more detail.
It is advised to read these sections before using them to model robots.

The last section also explains how Kinematic Solvers work.


Transformations

A Kinematic model is made up of Coordinate systems.
These coordinate systems are connected by transformations.

TriP implements its own Transformation class.

One can distinguish between static transformations and dynamic transformations.
Dynamic transformations change depending on an internal state thereby modeling the joints of a mechanism.

The Transformation class has an attribute that manages the internal state.


Transformation Descriptions

In general, states can influence the transformation in arbitrary ways.
Yet robotics uses several standard conventions.

The Transormation class currently supports the following conventions:


	translation with Euler angle rotation


	translation with quaternion rotation





Translation with Euler Angles rotation

This convention is perhaps the most natural and intuitive.
In this convention, the transformation is specified using 6 parameters [tx ty tz rx ry rz].
These parameters have the following interpretation:







	parameter

	interpretation





	tx

	moves the coordinate system along the x-axis



	ty

	moves the coordinate system along the y-axis



	tz

	moves the coordinate system along the z-axis



	rx

	rotates the coordinate system around the x-axis



	ry

	rotates the coordinate system around the y-axis



	rz

	rotates the coordinate system around the z-axis







Important

In this convention, rotation is always applied before translation.

The Euler angles follow the XYZ convention.
This means that the transformation first rotates around x, then around y, and lastly around z.
This convention is also called Roll, Pitch, and Yaw. Here rx=Roll, ry=Pitch, and rz=Yaw.



This transformation is captured by the following transformation matrix:


\[\begin{split}\begin{pmatrix} \cos{rz}\cos{ry} & \cos{rz}\sin{ry}\sin{rx} - \sin{rz}\cos{rx} & \cos{rz}\sin{ry}\cos{rx} + \sin{rz}\sin{rx} & t_x \\
                \sin{rz}\cos{ry} & \sin{rz}\sin{ry}\sin{rx} + \cos{rz}\cos{rx} & \sin{rz}\sin{ry}\cos{rx} - \cos{rz}\sin{rx} & t_y \\
                -\sin{ry}        & \cos{ry}\sin{rx}                            & \cos{ry}\cos{rx}                            & t_z \\
                0                & 0                                           & 0                                           & 1 \end{pmatrix}\end{split}\]

The definition of joints in this convention is very straightforward, below is a sample list of different joints:

[image: sample_joints]
Note that while all non specified parameters are assumed to be zero, the value of each state_variable still has to be supplied.



Translation with Quaternion rotation

Quaternions are an alternative four-dimensional description of rotation.
They have many advantages compared to Euler angles, which are explained here [https://en.wikipedia.org/wiki/Quaternion] .
However, they trade these advantages for an intuitive interpretation.







	parameter

	interpretation





	tx

	moves the coordinate system along the x-axis



	ty

	moves the coordinate system along the y-axis



	tz

	moves the coordinate system along the z-axis



	qw

	first quaternion, also called a.



	qx

	second quaternion, also called b.



	qy

	third quaternion, also called c.



	qz

	fourth quaternion, also called d.






The corresponding matrix is:


\[\begin{split}\begin{pmatrix} 1-2(q_y^2+q_z^2) & 2(q_xq_y-q_zq_w) &  2(q_xq_z + q_yq_w) & t_x \\
                2(q_xq_y + q_zq_w) & 1-2(q_x^2+q_z^2) &  2(q_yq_z - q_xq_w) & t_y \\
                2(q_xq_z-q_yq_w)   & 2(q_yq_z+q_xq_w) &  1-2(q_x^2+q_y^2)  & t_z \\
                0                & 0                  & 0                   & 1 \end{pmatrix}\end{split}\]


Important

The matrix only describes a rotation if all quaternions are normalized, meaning \(qw^2+qx^2+qy^2+qz^2=1\).
Since the current inverse kinematics solver does not support constraints this means that quaternions are not supported when calculating inverse kinematics.






Transformation trees

To fully specify the kinematic model of a robot not only the transformations are needed but also
how they are connected.
This is described by the so-called transformation tree.
Conventionally nodes of this tree describe coordinate frames while its edges describe transformations.
An example can be seen down below:

[image: transformation tree with coordinate frames]
Here the cursive graph nodes are coordinate frames while the edges are the transformations between them.
Since TriP only models transformations and not coordinate frames in TriP the name of a coordinate frame is synonymous with the name of the transformation leading to it.
This leads to the following simplified transformation tree:

[image: transformation tree]
In this tree the edge and the node it leads to refer to the transformation.
TriP builds this simplified transformation tree by specifying the parent of each transformation.
The parent is in this case the transformation that preceded the current transformation.
For the example transformation tree this would look like this:

to_joint_1 = Transformation(name="To Join1")
joint_1    = Transformation(name="Joint1",values={'ry': 0},state_variables=['ry'],parent=to_joint_1)

to_joint_2 = Transformation(name="To Joint2",values={'tx':1},parent=joint_1)
joint_2    = Transformation(name="Joint2",values={'ry': 0},state_variables=['ry'],parent=to_joint_2)
to_joint_3 = Transformation(name="To Joint3",values={'tx':1},parent=joint_2)
joint_3    = Transformation(name="Joint3",values={'ry': 0},state_variables=['ry'],parent=to_joint_3)

to_joint_4 = Transformation(name="To Joint4",values={'tx':1},parent=joint_1)
joint_4    = Transformation(name="Joint4",values={'ry': 0},state_variables=['ry'],parent=to_joint_4)
to_joint_5 = Transformation(name="To Joint5",values={'tx':1},parent=joint_4)
joint_5    = Transformation(name="Joint5",values={'ry': 0},state_variables=['ry'],parent=to_joint_5)






Important

Transformations with no parent are considered connected to the base Frame. Since for most robots, this is where they are connected to the floor this frame is also called Ground.
This can be seen in transformation `to_joint_1`. Note that strictly speaking this transformation is necessary since its transformation is an identity matrix.
It is only included for clarity.



The transformation tree building concept does not work if more than one transformation leads to the same frame.
Here one would have to distinguish between the transformations leading to the frame and the frame itself.
Such a situation is referred to as a closed kinematic chain, the next section will explain how they are modeled in TriP.




Kinematic Groups

Most kinematic libraries rely only on transformation objects because they only model open chains.
An example for this is IKPY [https://github.com/Phylliade/ikpy] .
In an open chain, the position and orientation of a coordinate system depend only on one transformation from its parent.

But, consider the excavator arm below:

[image: excavator_arm]
In this example, multiple coordinate systems have more than one parent since the transformations form a loop.

Such a loop is called a closed kinematic chain.

Classically closed chains are modeled using an algebraic closure equation \(g(q) = 0\).
The closure equation couples all joint states \(q\) so that multi transformations leading to the same frame all agree on the state of the frame.

In practice, this is computationally expensive and often entirely unnecessary.


Important

To simplify the system one could treat the system as if the hinges of the excavator’s arm were directly actuated.

This simplified virtual chain contains no closed loops and thus standard kinematics algorithms can be used to compute forward or inverse kinematics.

To get the solution of the real excavator, one simply has to convert between the state of the hinges and the state of the hydraulic cylinders.

This can be done using some kind of mapping function based on trigonometry.



TriP embraces this mapping approach and implements it using the KinematicGroup class.
A KinematicGroup is made up of a virtual_chain, an actuated_state, and two mappings.
The mappings convert between the state of the virtual_chain, called virtual_state, and the state of the actuated joints called actuated_state.

[image: group_structure]

Important

The virtual_chain has to be a single open chain without branches.
The reasons for this will be discussed in the next section




divide a robot into groups

In the example above the excavator is modeled as a single group.
However, it is also possible to divide the excavator into multiple groups.
These groups can then be combined just like transformations.
Multiple smaller groups have two advantages over a single large group:

For one it improves modularity, making it easier to reuse assembly parts.

But more importantly, it reduced computational cost.
To keep virtual and actuated state consistent mapping has to be called every time part of one state changes.
A single group mechanism would mean updating every state.
This problem is especially bad for branching mechanisms.
Consider a four-legged robot, setting the actuator of one leg would then mean updating all four legs.
To prevent this problem outright the virtual chain can not contain branches.

In summary, groups should be defined as small as possible.
Small in this case refers to the number of actuators that have to be grouped.
The minimum size is defined by the closed chains.
Consider the following mechanism

[image: group_partitoning]
Grouping a) and c) are valid groups, with a) being more performant.
However the Grouping in b) is not valid.
The reason is that the state of the top platform depends on the state of all three green prismatic joints.

These considerations lead to the following guidelines for building hybrid robots:


Important

Every closed chain should be modeled by a Group.
Every open chain should be modeled by Transformations.
Se the following robots as an example:

[image: group_partitoning]


The excavator has two actuated states and two virtual states.
These are the lengths of hydraulic cylinders \(a_1\), \(a_2\) and the arm angles \(q_1\), \(q_2\).
Since each cylinder length \(a_i\) controls one arm angle \(q_i\), the excavator can be divided into two groups.
These are visualized by the green and blue parts respectively.

The mappings for each group can be calculated using trigonometry:

[image: geometric_mapping]
The full code for the excavator looks like this:

 1from typing import Dict
 2from math import radians
 3import casadi
 4import numpy as np
 5
 6from trip_kinematics.Utility import hom_rotation, get_translation
 7from trip_kinematics.Utility import hom_translation_matrix, y_axis_rotation_matrix
 8from trip_kinematics.KinematicGroup import KinematicGroup
 9from trip_kinematics.Transformation import Transformation
10from trip_kinematics.Robot import Robot
11
12
13l_1 = 1
14l_2 = 0.7
15l_3 = 1.2
16l_4 = 0.4
17l_5 = 1.7
18
19# zero conventions for the actuated joints
20a_1_offset = 0
21a_2_offset = 0
22
23virtual_joint_1 = Transformation(name="q_1",
24                                 values={'ry': 0},
25                                 state_variables=['ry'])
26link_1 = Transformation(name="link_1",
27                        values={'tx': l_1+l_3+0.4},
28                        parent=virtual_joint_1)
29virtual_joint_2 = Transformation(name="q_2",
30                                 values={'ry': radians(-90)},
31                                 state_variables=['ry'])
32link_2 = Transformation(name="link_2",
33                        values={'tx': l_5},
34                        parent=virtual_joint_2)
35
36
37################################################
38# Direct mappings using geometric calculations #
39################################################
40
41def geometric_q_to_a_group_1(state: Dict[str, float], tips: Dict[str, float] = None):
42    # convert joint angle to triangle angle
43    q_1 = radians(90) - state['q_1']['ry']
44    return {'a_1': np.sqrt(l_1**2+l_2**2-2*l_1*l_2*np.cos(q_1))}
45
46
47def geometric_a_to_q_group_1(state: Dict[str, float], tips: Dict[str, float] = None):
48    a_1 = state['a_1'] + a_1_offset
49    return {'q_1': {'ry': np.arccos((l_1**2+l_2**2-a_1**2)/(2*l_1*l_2))}}
50
51
52def geometric_q_to_a_group_2(state: Dict[str, float], tips: Dict[str, float] = None):
53    q_2 = -1 * state['q_2']['ry']  # convert joint angle to triangle angle
54    return {'a_2': np.sqrt(l_3**2+l_4**2-2*l_3*l_4*np.cos(q_2))}
55
56
57def geometric_a_to_q_group_2(state: Dict[str, float], tips: Dict[str, float] = None):
58    a_2 = state['a_2'] + a_2_offset
59    return {'q_2': {'ry': np.arccos((l_3**2+l_4**2-a_2**2)/(2*l_3*l_4))}}
60
61
62geometric_group_1 = KinematicGroup(name="geometric group 1",
63                                   virtual_chain=[virtual_joint_1, link_1],
64                                   actuated_state={'a_1': 0},
65                                   actuated_to_virtual=geometric_a_to_q_group_1,
66                                   virtual_to_actuated=geometric_q_to_a_group_1)
67
68geometric_group_2 = KinematicGroup(name="geometric group 2",
69                                   virtual_chain=[virtual_joint_2, link_2],
70                                   actuated_state={'a_2': 0},
71                                   actuated_to_virtual=geometric_a_to_q_group_2,
72                                   virtual_to_actuated=geometric_q_to_a_group_2,
73                                   parent=geometric_group_1)
74
75geometric_excavator = Robot([geometric_group_1, geometric_group_2])







actuated state vs virtual state

If one looks at the code above one can see that the dictionary values of the actuated state in lines 26 and 36 are float values,
while the values of the virtual states in lines 32 and 39 are dictionaries.

This difference is because virtual states always specify convention parameters of a Transformation.
Actuated values on the other hand are not associated with a Transformation and thus don’t adhere to transformation conventions.

This is an important difference to keep in mind when dealing with both states.
Below are a few examples of joints and how their actuated and virtual states would differ.

[image: state_differences_normal]
[image: state_differences]


Using closure equations

While direct mappings are always preferable it is not always possible to find a direct function.
In this case, one can always resort to the closure equation.
Since TriP is based on mappings the closure equation is used to set up mapping functions that solve the closure equation.
For the mapping from actuated state to virtual state, the actuated states are fixed and the virtual states calculated.
Likewise, for the reverse mapping, the virtual state is fixed while the actuated states are calculated.

The setup of the closure equation will require extra transformations.
This can be done by building a full open chain or for simple chains by directly setting up the transformation matrices using the Utility submodule.
In this case of the excavator, the following joints can be defined:

[image: closure_mapping]
The solving of the closure equation can be performed by casadi, which TriP also uses for inverse kinematics calculations:

  1from typing import Dict
  2from math import radians
  3import casadi
  4import numpy as np
  5
  6from trip_kinematics.Utility import hom_rotation, get_translation
  7from trip_kinematics.Utility import hom_translation_matrix, y_axis_rotation_matrix
  8from trip_kinematics.KinematicGroup import KinematicGroup
  9from trip_kinematics.Transformation import Transformation
 10from trip_kinematics.Robot import Robot
 11
 12
 13l_1 = 1
 14l_2 = 0.7
 15l_3 = 1.2
 16l_4 = 0.4
 17l_5 = 1.7
 18
 19# zero conventions for the actuated joints
 20a_1_offset = 0
 21a_2_offset = 0
 22
 23virtual_joint_1 = Transformation(name="q_1",
 24                                 values={'ry': 0},
 25                                 state_variables=['ry'])
 26link_1 = Transformation(name="link_1",
 27                        values={'tx': l_1+l_3+0.4},
 28                        parent=virtual_joint_1)
 29virtual_joint_2 = Transformation(name="q_2",
 30                                 values={'ry': radians(-90)},
 31                                 state_variables=['ry'])
 32link_2 = Transformation(name="link_2",
 33                        values={'tx': l_5},
 34                        parent=virtual_joint_2)
 35
 36
 37###################################################################
 38# mappings using colsure equation solution geometric calculations #
 39###################################################################
 40opts = {'ipopt.print_level': 0, 'print_time': 0}
 41
 42closure_1_state = casadi.SX.sym('cls_1_q', 3)
 43
 44cls_q_1 = hom_rotation(y_axis_rotation_matrix(closure_1_state[0]))
 45cls_l_1 = hom_translation_matrix(t_x=l_1)
 46cls_qs_2 = hom_rotation(y_axis_rotation_matrix(closure_1_state[1]))
 47cls_a_1 = hom_translation_matrix(t_x=closure_1_state[2])
 48cls_a_1z = hom_translation_matrix(t_x=a_1_offset)
 49cls_1_trafo = cls_q_1 * cls_l_1 * cls_qs_2 * cls_a_1 * cls_a_1z
 50
 51cls_1_trafo_pos = get_translation(cls_1_trafo)
 52
 53c_1 = (cls_1_trafo_pos[0]-l_2)**2 + \
 54    cls_1_trafo_pos[1]**2 + cls_1_trafo_pos[2]**2
 55
 56
 57def closure_q_to_a_group_1(state: Dict[str, float]):
 58    nlp = {'x': closure_1_state[1:], 'f': c_1, 'p': closure_1_state[0]}
 59    nlp_solver = casadi.nlpsol('q_to_a', 'ipopt', nlp, opts)
 60    solution = nlp_solver(x0=[0, 0], p=[state['q_1']['ry']])
 61    sol_vector = np.array(solution['x'])
 62    return {'a_1': sol_vector[1]}
 63
 64
 65def closure_a_to_q_group_1(state: Dict[str, float]):
 66    nlp = {'x': closure_1_state[:1], 'f': c_1, 'p': closure_1_state[2]}
 67    nlp_solver = casadi.nlpsol('a_to_q', 'ipopt', nlp, opts)
 68    solution = nlp_solver(x0=[0, 0], p=[state['a_1']])
 69    sol_vector = np.array(solution['x'])
 70    return {'q_1': {'ry': sol_vector[0]}}
 71
 72
 73closure_2_state = casadi.SX.sym('cls_2_q', 3)
 74
 75cls_q_2 = hom_rotation(y_axis_rotation_matrix(closure_2_state[0]))
 76cls_l_4 = hom_translation_matrix(t_x=l_4)
 77cls_qs_4 = hom_rotation(y_axis_rotation_matrix(closure_2_state[1]))
 78cls_a_2 = hom_translation_matrix(t_x=closure_2_state[2])
 79cls_a_2z = hom_translation_matrix(t_x=a_1_offset)
 80cls_2_trafo = cls_q_2 * cls_l_4 * cls_qs_4 * cls_a_2 * cls_a_2z
 81
 82cls_2_trafo_pos = get_translation(cls_1_trafo)
 83
 84c_2 = (cls_2_trafo_pos[0]+l_3)**2 + \
 85    cls_2_trafo_pos[1]**2 + cls_2_trafo_pos[2]**2
 86
 87
 88def closure_q_to_a_group_1(state: Dict[str, float]):
 89    nlp = {'x': closure_2_state[1:], 'f': c_2, 'p': closure_2_state[0]}
 90    nlp_solver = casadi.nlpsol('q_to_a', 'ipopt', nlp, opts)
 91    solution = nlp_solver(x0=[0, 0], p=[state['q_1']['ry']])
 92    sol_vector = np.array(solution['x'])
 93    return {'a_2': sol_vector[1]}
 94
 95
 96def closure_a_to_q_group_1(state: Dict[str, float]):
 97    nlp = {'x': closure_2_state[:1], 'f': c_2, 'p': closure_2_state[2]}
 98    nlp_solver = casadi.nlpsol('a_to_q', 'ipopt', nlp, opts)
 99    solution = nlp_solver(x0=[0, 0], p=[state['a_1']])
100    sol_vector = np.array(solution['x'])
101    return {'q_2': {'ry': sol_vector[0]}}
102







Defining virtual chains

In the vast majority of cases, the specification of the virtual chain is straightforward.
One simply uses a single chain of transformations that goes from one end of the group to the other.
However, in some cases, this can lead to unintended or suboptimal results.

As a simple example of this problem, think of the excavator arm from above.
Assuming that it had a spherical joint at the elbow, the system would still not be able to move any differently.
However, the virtual open chain which neglects the hydraulic cylinders would suddenly behave much differently.

An inverse kinematics solver might now try to find open chain configurations that are not possible with the full mechanism.


Warning

Since TriP currently does not support Joint limits, it can not detect which open chain configurations are not possible.
This can lead to solvers failing outright.



This problem can be avoided by designing a custom virtual open chain.
In the case of the excavator this is very simple, just substitute the spherical joint with a revolute joint.
For more complicated robots this might be more complex, a general rule of thumb is:


Important

The virtual open chain should offer the same degrees of freedom as the full mechanism.
Ideally, the correspondence between virtual joints and actuated joints should be as simple as possible.






Robots

The Robot class is the centerpiece of TriP, they encapsulate  Transormation  and KinematicGroup objects of a Robot.
This causes some problems.
Groups distinguish between actuated_states and virtual_states while for a transformation these are the same.´


Important

To solve this problem Transformations are internally converted into groups.
The actuated state of a transformation follows the naming convention NAME_KEY
where NAME is the name of the Transformation and KEY is a key for the state of the transformation.
The full actuated state of a robot can be returned using the get_actuated_state method.



For robots without closed chains, both the virtual_state and the actuated_state can be used interchangeably.
We advise nevertheless to use the actuated_state whenever possible as a general convention.


End Effectors

The Robot class offers the same functionality as the Group object at a more abstract level.
Additionally, it supports end effectors.
In robotics, an end effector is conventionally a device at the end of a robotics arm which interacts with the environment.
Kinematically and more, generally speaking, it is a coordinate frame whose position and orientation is of special interest.
This might be because it holds a tool, or because it specifies a foot position or maybe it just holds a sensor.

In any case, end effectors are coordinate frames for which we might want to compute forward or inverse kinematics.
Since for open chains frames and the transformations leading to them are synonymous an effectors can be any frame resulting from a transformation of a robots virtual_chain.
Remember since the robot is comprised of groups it’s virtual open chain is a concatenation of the virtual_chains of each group.

The Robot class offers the get_endeffectors method for ease of use which returns the names of all possible end effector frames.



Symbolic Representations

The robot class is capable of generating symbolic representations of end effector kinematics.
This means it can describe the state of and end effector frame as a mathematical function \(\tilde{p}(\tilde{q})\) whose input is the virtual state \(\tilde{q}\).

This is handy for several reasons:


	It allows for quick calculations of the end effector position without needing matrix multiplication at every step


	It allows automatic mathematical derivation to calculate the Jacobi matrix and generally analyze the virtual chain


	It allows the setup of mathematical solvers which can compute the inverse kinematics for a given end effector.




Generally, the first point is not needed as the forward kinematics is quite fast on its own and can be called using the forward_kinematic function given an end effector and a robot object.
However, if speed is the issue, the casadi library which is used for the symbolic representation is capable of generating C code from such a function object.
This can be used to further speed up code executions or calculate the kinematics on an embedded device.

The main advantages, however, are the second and the third points which are related seeing that most numerical optimization requires the computation of gradients.
Casadi features fast algorithmic differentiation (a powerful hybrid between numerical differentiation and analytic differentiation used in many machine learning solutions).
This allows the fast calculations of gradients and Jacobi matrices.

As such TriP can also be used to do kinematic analysis for open chains.
Note that it does not support closed chains because the mapping functions don’t have to be casadi objects.
However if one does use casadi like functions TriP can also be used to analyze hybrid chains.

In general, the symbolic representation returns a casadi object on which the full`casadi feature pallet can be used.
This includes the setup of numerical solvers which are used to calculate the inverse kinematics.



Forward kinematics

The calculation of forward kinematics is done using the forward_kinematic function.
The general procedure can be seen in the image below:

[image: inverse_kinematics_procedure]
The forward kinematics of the virtual_chain are in this case calculated by multiypling the transformation matrices of the virtual_chain together.
This results in a 4x4 transformation matrix describing the state of the end effector.




Solvers

Solvers are objects which calculate the inverse kinematics for a given Robot and end effector.
The reason they are not functions like the forward_kinematic functions is that the generation and setup of a casadi solver object is the biggest performance bottleneck.
To circumvent this, solver classes generate and store casadi solver objects for a given robot and end effector.
Using casadis framework it is then easily possible to implement different types of solving algorithms.

TriP currently only has one type of solver object called SimpleInvKinSolver which will be further explained shortly.
However it is also possible to write your own solver classes, all one has to do is implement the solve_virtual and solve_actuated
functions which return the virtual and actuated state respectively given a desired end effector state and an optional initial solver tip.


SimpleInvKinSolver

The SimpleInvKinSolver is as the name implies a rudimentary solver whose general procedure can be seen in the image below:

[image: inverse_kinematics_procedure]
First, the system tries to find a virtual state which results in the end effector being as close as possible to the target.
This is done using a casadis NLP solver using auto-generated jacobian and hessian matrices.

In the next step, the system calls the internal mapping functions of the robot to convert the virtual_state into an actuated_state.


Warning

This sequential approach is not capable of handling virtual_states for which no actuate_state can be found.
In this case, the solver simply fails.
To prevent this, suitable starting values for the solver can be supplied and the virtual_chain can be set up to minimize the chance of this happening.
See section Defining virtual chains for reference.








            

          

      

      

    

  

    
      
          
            
  
Getting Started

The current release of the project can always be found on the python package index PyPi [https://en.wikipedia.org/wiki/Quaternion] .
However, since another python package is already called trip, the package is called trip_kinematics.
The current stable release can be installed using:

pip install trip_kinematics





Alternatively, the current development version can be downloaded using Github:

git clone https://github.com/TriPed-Robot/TriP
cd TriP
pip install src/





For more information on how to use the library once installed visit the Tutorials or read ‘How TriP models Robots’.




            

          

      

      

    

  

    
      
          
            
  
Tutorials





Building a Robot Model

Before TriPs functionality can be used on a robot, it first has to be build within TriP.
This Tutorial will show how to build the TriPed robot [https://triped-robot.github.io/docs/robot/]  shown below:

[image: triped]
Here each leg was highlighted in a different color.
Since all legs are identicall, this tutorial will start with a single leg.
More information about the triped legs can be found here [https://triped-robot.github.io/docs/legs/] .

The first step in setting up a robot is identifying the groups and transformations.
TriP uses Groups to model closed kinematic chains.
These are structures where multiple moving parts converge in a single location forming one or more loops.
Some examples can be seen down below:

These closed chains will either be connected directly to each other or using a series of other moving parts.
Such a series is called a open kinematic chain.
Open Kinematic chains are handled using a series of transformations.

In the case of the TriPed the following chains can be identified:

[image: triped-hybrid_chain]
This in turn means that the leg of the TriPed contains one kinematic group and a number of transformations representing the open chain.

Once each group has been identified the group construction worklow goes like this:

[image: trip_sample_workflow]

Building open chains

Groups handle closed chains by abstracting them into a virtual open chains that models how group moves combined with two mapping functions from these virtual joints to the actual actuated joints and back.
This means that for both the open and the closed chain, a chain has to be build.
The precise transformations depend on the type of robot and its conventions.
The kinematic transformations of the TriPed are described here: here [https://triped-robot.github.io/docs/kinematics/]  .
This leads to the following virtual open chain:

 1from math import radians
 2from typing import Dict
 3from casadi import SX, nlpsol, vertcat
 4import numpy as np
 5
 6
 7from trip_kinematics.KinematicGroup import KinematicGroup
 8from trip_kinematics.Transformation import Transformation
 9from trip_kinematics.Robot import Robot
10from trip_kinematics.Utility import hom_translation_matrix, x_axis_rotation_matrix
11from trip_kinematics.Utility import y_axis_rotation_matrix, z_axis_rotation_matrix
12from trip_kinematics.Utility import hom_rotation, get_translation
13a_ccs_p_trans = Transformation(name='A_ccs_P_trans',
14                               values={'tx': 0.265, 'tz': 0.014})
15a_ccs_p_rot = Transformation(name='gimbal_joint',
16                             values={'rx': 0, 'ry': 0, 'rz': 0},
17                             state_variables=['rx', 'ry', 'rz'],
18                             parent=a_ccs_p_trans)





And the corresponding transformations for the open chain:

 1a_p_ll = Transformation(name='A_P_LL',
 2                        values={'tx': 1.640, 'tz': -0.037, },
 3                        parent=closed_chain)
 4a_ll_zero = Transformation(name='zero_angle_convention',
 5                           values={'ry': radians(-3)},
 6                           parent=a_p_ll)
 7a_ll_zero_ll_joint = Transformation(name='extend_joint',
 8                                    values={'ry': 0},
 9                                    state_variables=['ry'],
10                                    parent=a_ll_zero)
11a_ll_joint_fcs = Transformation(name='A_LL_Joint_FCS',
12                                values={'tx': -1.5},
13                                parent=a_ll_zero_ll_joint)






Warning

Note that the second code block references the closed chain as its parent. Since this group is not yet build the code above will encounter errors.
In Practice the close chain group first has to be built. The correct order of this code can be seen [here](https://github.com/TriPed-Robot/trip_kinematics/blob/main/src/trip_robots/triped_leg.py).



Note that both chains are made up of transformations without state_variables.
Such transformations are ‘static’ and dont represent a joint.
It is possible to construct open chains without such transformations (see the denavit hartenberg [https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters/] convention for example).
In practice however they are handy to specify the position of a joint at a specified angle.
This allows the joint angles to be interpretable.
This can be seen with the a_ll_zero transformation. It ensures that a extend_joint angle corresponds to the foot of the leg being completely retracted.



Create Mappings

For the kinematic group a mapping from the actuated swing_joints to the virtual gimbal joint have to be provided. These joints can be seen down below:

[image: triped_mapping]
The mapping between these joints can be computet by solving a geometric closing equation. As pictured above, the tip \(x_i\) the output lever connected to the actuated joints  \(i\)
alwas intersects the sphere at position \(c_i\) where \(i\) is either 1 or 2.

Mathematically this can be described using:


\[\sum_{i=1}^2||(c_i(rx,ry,rz^v)-p_{_i}(rz_i^a))^T(c_i(rx,ry,rz^v)-p_{i}(rz_i^a))-r^2||^2 = 0\]

Where \(rx,ry,rz\) are the rotation around the x, y and z axis and the suberscript :math:`v,~a`denotes the virtual and actuated state respectively.

The virtual_to_actuated and actuated_to_virtual mappings can now be defined as the virtual or actuated state that solves the closure equation assuming the other state as a fixed value.
This can be done using casadis nonelinear programming solver.
The final code can be seen down below:

  1def sphere_centers(r_x, r_y, r_z):
  2    """Generates the centers of the spheres used for the geometric closure equation
  3
  4    Args:
  5        r_x (float): gimbal joint state rx
  6        r_y (float): gimbal joint state ry
  7        r_z (float): gimbal joint state rz
  8
  9    Returns:
 10        numpy array, numpy array: Two 3D arrays containing the sphere centers
 11    """
 12    a_ccs_p_trans_m = hom_translation_matrix(
 13        t_x=0.265, t_y=0, t_z=0.014)
 14    a_ccs_p_rot_m = hom_rotation(x_axis_rotation_matrix(r_x) @
 15                                 y_axis_rotation_matrix(r_y) @
 16                                 z_axis_rotation_matrix(r_z))
 17    a_p_sph_1_2 = hom_translation_matrix(
 18        t_x=0.015, t_y=0.029, t_z=-0.0965)
 19    a_p_sph_2_2 = hom_translation_matrix(
 20        t_x=0.015, t_y=-0.029, t_z=-0.0965)
 21
 22    a_ccs_ = a_ccs_p_trans_m @ a_ccs_p_rot_m
 23    a_c1 = a_ccs_ @ a_p_sph_1_2
 24    a_c2 = a_ccs_ @ a_p_sph_2_2
 25
 26    return get_translation(a_c1), get_translation(a_c2)
 27
 28
 29def intersection_left(theta):
 30    """calculates the desired sphere intersection point based on the left swing joint
 31
 32    Args:
 33        theta (float): angle of the left swing joint
 34
 35    Returns:
 36        numpy array: the sphere intersection
 37    """
 38    a_ccs_lsm_trans = hom_translation_matrix(
 39        t_x=0.139807669447128, t_y=0.0549998406976098, t_z=-0.051)
 40    a_ccs_lsm_rot = hom_rotation(z_axis_rotation_matrix(radians(-345.0)))
 41    a_mcs_1_joint = hom_rotation(z_axis_rotation_matrix(theta))
 42    a_mcs_1_sp_1_1 = hom_translation_matrix(
 43        t_x=0.085, t_y=0, t_z=-0.0245)
 44
 45    a_ccs_sp_1_1 = a_ccs_lsm_trans @ a_ccs_lsm_rot @ a_mcs_1_joint @ a_mcs_1_sp_1_1
 46    return get_translation(a_ccs_sp_1_1)
 47
 48
 49def intersection_right(theta):
 50    """calculates the desired sphere intersection point based on the right swing joint
 51
 52    Args:
 53        theta (float): angle of the right swing joint
 54
 55    Returns:
 56        numpy array: the sphere intersection
 57    """
 58    a_ccs_rsm_tran = hom_translation_matrix(
 59        t_x=0.139807669447128, t_y=-0.0549998406976098, t_z=-0.051)
 60    a_ccs_rsm_rot = hom_rotation(z_axis_rotation_matrix(radians(-15.0)))
 61    a_mcs_2_joint = hom_rotation(z_axis_rotation_matrix(theta))
 62    a_mcs_2_sp_2_1 = hom_translation_matrix(
 63        t_x=0.085, t_y=0, t_z=-0.0245)
 64
 65    a_ccs_sp_2_1 = a_ccs_rsm_tran @ a_ccs_rsm_rot @ a_mcs_2_joint @ a_mcs_2_sp_2_1
 66    return get_translation(a_ccs_sp_2_1)
 67
 68
 69def swing_to_gimbal(state: Dict[str, float], tips: Dict[str, float] = None):
 70    """Actuated to virtual state mapping for the TriPed legss closed subchain
 71
 72    Args:
 73        state (Dict[str, float]): actuated state of the TriPed leg closed subchain
 74        tips (Dict[str, float], optional): Initial state for the closure equation solver.
 75                                           Defaults to None in which case [0,0,0] is used.
 76
 77    Returns:
 78        Dict[str, Dict[str, float]]: the correspdonding state of the virtual chain
 79    """
 80    x_0 = [0, 0, 0]
 81    if tips:
 82        x_0[2] = tips['rx']
 83        x_0[3] = tips['ry']
 84        x_0[4] = tips['rz']
 85
 86    nlp = {'x': virtual_state, 'f': closing_equation, 'p': actuated_state}
 87    nlp_solver = nlpsol('swing_to_gimbal', 'ipopt', nlp, opts)
 88    solution = nlp_solver(x0=x_0,
 89                          p=[state['swing_left'], state['swing_right']])
 90    sol_vector = np.array(solution['x'])
 91    return {'gimbal_joint': {'rx': sol_vector[0][0],
 92                             'ry': sol_vector[1][0],
 93                             'rz': sol_vector[2][0]}}
 94
 95
 96def gimbal_to_swing(state: Dict[str, Dict[str, float]], tips: Dict[str, float] = None):
 97    """Virtual to actuated state mapping for the TriPed legss closed subchain
 98
 99    Args:
100        state (Dict[str, Dict[str, float]]): virtual state of the TriPed leg closed subchain
101        tips (Dict[str, float], optional): Initial state for the closure equation solver.
102                                           Defaults to None in which case [0,0] is used.
103
104    Returns:
105        Dict[str, float]: the correspdonding actuated state
106    """
107    x_0 = [0, 0]
108    continuity = 0
109    if tips:
110        x_0[0] = tips['swing_left']
111        x_0[1] = tips['swing_right']
112        continuity = (x_0-actuated_state).T @ (x_0-actuated_state)
113
114    nlp = {'x': actuated_state, 'f': closing_equation+continuity, 'p': virtual_state,
115           'g': actuated_state[0]*actuated_state[1]}
116    nlp_solver = nlpsol('gimbal_to_swing', 'ipopt', nlp, opts)
117    solution = nlp_solver(x0=x_0,
118                          p=[state['gimbal_joint']['rx'],
119                             state['gimbal_joint']['ry'],
120                             state['gimbal_joint']['rz']],
121                          ubg=0)
122    sol_vector = np.array(solution['x'])
123    return {'swing_left': sol_vector[0][0], 'swing_right': sol_vector[1][0]}
124
125
126theta_left = SX.sym('theta_left')
127theta_right = SX.sym('theta_right')
128gimbal_x = SX.sym('gimbal_x')
129gimbal_y = SX.sym('gimbal_y')
130gimbal_z = SX.sym('gimbal_z')
131
132virtual_state = vertcat(gimbal_x, gimbal_y, gimbal_z)
133actuated_state = vertcat(theta_left, theta_right)
134
135opts = {'ipopt.print_level': 0, 'print_time': 0}
136RADIUS = 0.11
137c1, c2 = sphere_centers(r_x=gimbal_x, r_y=gimbal_y, r_z=gimbal_z)
138closing_equation = (((c1-intersection_left(theta_right)).T @ (c1-intersection_left(theta_right)) -
139                    RADIUS**2)**2 +
140                    ((c2-intersection_right(theta_left)).T @ (c2-intersection_right(theta_left)) -
141                    RADIUS**2)**2)







Building the group

Using both the mappings and the virtual open chain, the group can be build:

1closed_chain = KinematicGroup(name='closed_chain',
2                              virtual_chain=[a_ccs_p_trans, a_ccs_p_rot],
3                              actuated_state={
4                                  'swing_left': 0, 'swing_right': 0},
5                              actuated_to_virtual=swing_to_gimbal,
6                              virtual_to_actuated=gimbal_to_swing)





Note that the closed chain specifies no parent since it is located directly at the robots base and the open chain specifies no mappings since these are autogenerated.



Combining groups to a robot

The last step is to combine the group and transformations into a robot object:

triped_leg     = Robot([closed_chain,a_p_ll,a_ll_zero,a_ll_zero_ll_joint,a_ll_joint_fcs])







Building the complete robot

Since the TriPed has three legs, the above process has to be repeated three times.
Each time the joints and actuated state need their own unique names.

Since this would be tedious to do by hand, a function can be written that returns the full transformation of a single leg.
This functions then follows the above steps, only appending the initial kinematic group with a transformation to the start position of each leg.

This function can be seen here:

 1def leg_model(leg_number: str):
 2    """Helper function that constructs each TriPed leg as a list of Transformations.
 3
 4    Args:
 5        leg_number (str): The leg number which determins the orientation.
 6                          Acceptable values [0,1,2]
 7    """
 8    def rename_swing_to_gimbal(swing: Dict[str, float], tips: Dict[str, float] = None):
 9        swing = deepcopy(swing)
10        swing['swing_left'] = swing[leg_name+'swing_left']
11        swing['swing_right'] = swing[leg_name+'swing_right']
12        del swing[leg_name+'swing_left']
13        del swing[leg_name+'swing_right']
14
15        if tips is not None:
16            tips = deepcopy(tips)
17            tips['gimbal_joint'] = tips[leg_name+'gimbal_joint']
18            del tips[leg_name+'gimbal_joint']
19
20        gimbal = swing_to_gimbal(swing, tips)
21
22        gimbal[leg_name+'gimbal_joint'] = gimbal['gimbal_joint']
23        del gimbal['gimbal_joint']
24
25        return gimbal
26
27    def rename_gimbal_to_swing(gimbal: Dict[str, float], tips: Dict[str, float] = None):
28        gimbal = deepcopy(gimbal)
29        gimbal['gimbal_joint'] = gimbal[leg_name+'gimbal_joint']
30        del gimbal[leg_name+'gimbal_joint']
31
32        if tips is not None:
33            tips = deepcopy(tips)
34            tips['swing_left'] = tips[leg_name+'swing_left']
35            tips['swing_right'] = tips[leg_name+'swing_right']
36            del tips[leg_name+'swing_left']
37            del tips[leg_name+'swing_right']
38
39        swing = gimbal_to_swing(gimbal, tips)
40
41        swing[leg_name+'swing_left'] = swing['swing_left']
42        swing[leg_name+'swing_right'] = swing['swing_right']
43        del swing['swing_left']
44        del swing['swing_right']
45
46        return swing
47
48    leg_name = 'leg_'+str(leg_number)+'_'
49
50    leg_rotation = Transformation(name=leg_name+'leg_rotation',
51                                  values={'rz': -1*radians(120)*leg_number})
52    a_ccs_p_trans = Transformation(name=leg_name+'A_ccs_P_trans',
53                                   values={'tx': 0.265, 'tz': 0.014},
54                                   parent=leg_rotation)
55    a_ccs_p_rot = Transformation(name=leg_name+'gimbal_joint',
56                                 values={'rx': 0, 'ry': 0, 'rz': 0},
57                                 state_variables=['rx', 'ry', 'rz'],
58                                 parent=a_ccs_p_trans)
59
60    closed_chain = KinematicGroup(name=leg_name+'closed_chain',
61                                  virtual_chain=[leg_rotation,
62                                                 a_ccs_p_trans, a_ccs_p_rot],
63                                  actuated_state={
64                                      leg_name+'swing_left': 0, leg_name+'swing_right': 0},
65                                  actuated_to_virtual=rename_swing_to_gimbal,
66                                  virtual_to_actuated=rename_gimbal_to_swing)
67
68    a_p_ll = Transformation(name=leg_name+'A_P_LL',
69                            values={'tx': 1.640, 'tz': -0.037, },
70                            parent=closed_chain)
71    a_ll_zero = Transformation(name=leg_name+'zero_angle_convention',
72                               values={'ry': radians(-3)},
73                               parent=a_p_ll)
74    a_ll_zero_ll_joint = Transformation(name=leg_name+'extend_joint',
75                                        values={'ry': 0},
76                                        state_variables=['ry'],
77                                        parent=a_ll_zero)
78    a_ll_joint_fcs = Transformation(name=leg_name+'A_LL_Joint_FCS',
79                                    values={'tx': -1.5},
80                                    parent=a_ll_zero_ll_joint)
81
82    return [closed_chain, a_ll_zero_ll_joint, a_ll_joint_fcs, a_p_ll, a_ll_zero]





The final TriPed robot can then be build using:

1triped = Robot(leg_model(0)+leg_model(1)+leg_model(2))








Importing URDF Files

The Universal Robot Description Format (URDF) is used to describe a variety of serial robot mechanisms.
Trip includes a URDF parser that allows the importation of alist of transfomrations from a URDF file

It can be used directly after importing the TriP library by calling the function trip_kinematics.from_urdf with the path to the URDF file as the argument. Note that the function returns a list of Transformations, which you probably want to create a Robot from in most cases:

transformations_list = trip_kinematics.urdf_parser.from_urdf(urdf_path)
robot = Robot(transformations_list)





This means you can also add other Transformations manually on top of those specified in the URDF file, if required.

Also note that the parser includes defaults for certain values if the corresponding URDF tag is missing, specifically:


	<origin> defaults to <origin xyz=”0 0 0” rpy=”0 0 0” />.


	(The same also applies if only one of xyz and rpy is specified, with the omitted value defaulting to “0 0 0”)






	<axis> defaults to <axis  xyz=”0 0 1” />








            

          

      

      

    

  

    
      
          
            
  
Code Documentation





	
class trip_kinematics.Transformation.Transformation(name: str, values: Dict[str, float], state_variables: Optional[List[str]] = None, parent=None)

	Initializes the Transformation class.


	Parameters

	
	name (str) – The unique name identifying the Transformation.
No two Transformation objects of a :py:class`Robot`
should have the same name


	values (Dict[str, float]) – A parametric description of the transformation.


	state_variables (List[str], optional) – This list describes which state variables are
dynamically changable.
This is the case if the Transformation
represents a joint. Defaults to [].






	Raises

	ValueError – A dynamic state was declared that does not
    correspond to a parameter declared in values.






	
add_children(child: str)

	
	Adds the name of a KinematicGroup or Transformation
	as a child.






	Parameters

	child (str) – the name of a KinematicGroup or Transformation










	
static get_convention(state: Dict[str, float])

	
	Returns the connvention which describes how the matrix
	of a Transformation is build from its state.






	Parameters

	state (Dict[str, float]) – :py:attr:’state’



	Raises

	
	ValueError – “Invalid key.” If the dictionary kontains keys that dont
    correspond to a parameter of the transformation.


	ValueError – “State can’t have euler angles and quaternions!”
    If the dictionary contains keys correspondig
    to multiple mutually exclusive conventions.






	Returns

	A string describing the convention



	Return type

	[type]










	
get_name()

	Returns the _name of the Transformation


	Returns

	a copy the _name attribute



	Return type

	str










	
get_state()

	
	Returns a copy of the _state
	attribute of the Transformation object.






	Returns

	a copy of the _state



	Return type

	Dict[str,float]










	
get_transformation_matrix()

	
	Returns a homogeneous transformation matrix build
	from the state and constants






	Raises

	RuntimeError – If the convention used in state is not supported.
    Should normally be catched during initialization.



	Returns

	
	A transformation matrix build using the parameters
	of the Transformation state









	Return type

	[type]










	
set_state(state: Dict[str, float])

	Sets the state of the Transformation object.


	Parameters

	state (Dict[str, float]) – Dictionary with states that should be set.
Does not have to be the full state.



	Raises

	KeyError – If a key in the argument is not valid state parameter name.














	
trip_kinematics.Transformation.array_find(arr, obj) → int

	
	A helpher function which finds the index of an object in an array.
	Instead of throwing an error when no index can be found it returns -1.






	Parameters

	
	arr – the array to be searched


	obj – the object whose index is to be found.






	Returns

	The index of obj in the array. -1 if the object is not in the array



	Return type

	int










	
class trip_kinematics.KinematicGroup.KinematicGroup(name: str, virtual_chain: List[trip_kinematics.Transformation.Transformation], actuated_state: Dict[str, float], actuated_to_virtual: Callable, virtual_to_actuated: Callable, act_to_virt_args=None, virt_to_act_args=None, parent=None)

	Initializes a KinematicGroup object.


	Parameters

	
	name (str) – The unique name identifying the group.
No two KinematicGroup objects of a :py:class`Robot` should have the
same name


	virtual_chain (List[Transformation]) – A list of Transformation
objects forming a serial Kinematic chain.


	actuated_state (List[Dict[str, float]]) – The State of the Groups actuated joints.


	actuated_to_virtual (Callable) – Maps the actuated_state to the
virtual_state of the virtual_chain.


	virtual_to_actuated (Callable) – Maps the virtual_state of the
virtual_chain to the
actuated_state.


	act_to_virt_args ([type], optional) – Arguments that can be passed to
actuated_to_virtual during the initial
testing of the function. Defaults to None.


	virt_to_act_args ([type], optional) – Arguments that can be passed to
virtual_to_actuated during the initial
testing of the function. Defaults to None.


	parent (Union(Transformation,KinematicGroup), optional) – The transformation or group
preceding the
KinematicGroup.
Defaults to None.






	Raises

	
	ValueError – ‘Error: Actuated state is missing.
     You provided a mapping to actuate the group but no state to be actuated.’
    if there is no actuated_state despite a mapping being passed


	ValueError – ‘Error: Only one mapping provided. You need mappings for both ways.
     Consider to pass a trivial mapping.’
    if either actuated_to_virtual or virtual_to_actuated
    was not set despite providing a actuated_state.


	ValueError – ‘Error: Mappings missing. You provided an actuated state but no mappings.
    If you want a trivial mapping you don’t need to pass an actuated state.
    Trip will generate one for you.’
    if both actuated_to_virtual and virtual_to_actuated
    were not set despite providing a actuated_state.


	RuntimeError – “actuated_to_virtual does not fit virtual state” if the
    actuated_to_virtual function does not return a valid
    virtual_state dictionary.


	RuntimeError – “virtual_to_actuated does not fit actuated state” if the
    virtual_to_actuated function does not return a valid
    actuated_state dictionary.









	
add_children(child: str)

	
	Adds the name of a KinematicGroup or Transformation
	as a child.






	Parameters

	child (str) – the name of a KinematicGroup or Transformation










	
get_actuated_state()

	
	Returns a copy of the actuated_state
	attribute of the KinematicGroup object.






	Returns

	a copy of the actuated_state



	Return type

	Dict[str,float]










	
get_name()

	Returns the _name of the KinematicGroup


	Returns

	the _name attribute



	Return type

	str










	
get_transformation_matrix()

	
	Calculates the full transformationmatrix from
	the start of the virtual chain to its endeffector.






	Returns

	
	The homogenous transformation matrix from
	the start of the virtual chain to its endeffector.









	Return type

	array










	
get_virtual_chain()

	
	Returns a copy of the _virtual_chain
	attribute of a KinematicGroup object.






	Returns

	a copy of the _virtual_chain



	Return type

	Dict[str,Transformation]










	
get_virtual_state()

	
	Returns a copy of the virtual_state
	attribute of the KinematicGroup object.






	Returns

	a copy of the virtual_state



	Return type

	Dict[str,Dict[str,float]]










	
static object_list_to_key_lists(object_lst)

	Helper function which transforms dictionary into list of keys.


	Parameters

	object_lst (Dict) – The dictionary to be transformed



	Returns

	A list of keys



	Return type

	list(str)










	
pass_arg_a_to_v(argv)

	Allows arguments to be passed the actuated_to_virtual mapping.


	Parameters

	argv ([type]) – arguments to be passed.










	
pass_arg_v_to_a(argv)

	Allows arguments to be passed the virtual_to_actuated mapping.


	Parameters

	argv ([type]) – arguments to be passed.










	
set_actuated_state(state: Dict[str, float])

	
	Sets the actuated_state of the Group and
	automatically updates the corresponding virtual_state.






	Parameters

	state (Dict[str, float]) – A dictionary containing the members
of actuated_state that should be set.



	Raises

	
	RuntimeError – if all  Transformation objects
    of _virtual_chain are static.


	ValueError – if the state to set is not part of keys of actuated_state













	
set_virtual_state(state: Dict[str, Dict[str, float]])

	
	Sets the virtual_state of the Group and
	automatically updates the corresponding actuated_state.






	Parameters

	state (Dict[str,Dict[str, float]]) – A dictionary containing the members of
virtual_state that should be set.
The new values need to be valid state
for the state of the joint.



	Raises

	
	RuntimeError – if all  Transformation objects
    of _virtual_chain are static.


	ValueError – if the state to set is not part of keys of virtual_state

















	
class trip_kinematics.KinematicGroup.OpenKinematicGroup(name: str, virtual_chain: List[trip_kinematics.Transformation.Transformation], parent=None)

	
	A subclass of the KinematicGroup that assumes that all states
	of the virtual_chain are actuated and automatically generates mappings.
Typically only used internally by the :py:class`Robot` class to convert
:py:class`Transformation` objects to :py:class`KinematicGroup`s.






	Parameters

	
	name (str) – The unique name identifying the group.
No two KinematicGroup objects of a :py:class`Robot` should have the
same name


	virtual_chain (List[Transformation]) – A list of Transformation
objects forming a serial Kinematic chain.


	parent (Union(Transformation,KinematicGroup), optional) – The transformation or group
preceding the
KinematicGroup.
Defaults to None.













	
class trip_kinematics.Robot.Robot(kinematic_chain: List[trip_kinematics.KinematicGroup.KinematicGroup])

	A class representing the kinematic model of a robot.


	Parameters

	kinematic_chain (List[KinematicGroup]) – A list of Kinematic Groups and Transformations
which make up the robot.
Transformations are automatically
converted to groups



	Raises

	
	KeyError – “More than one robot actuator has the same name!
     Please give each actuator a unique name”
    if there are actuated states with the same names between the
    :py:class`KinematicGroup` objects of the :py:class`Robot`


	KeyError – if there are joints with the same names between
    the :py:class`KinematicGroup` objects of the :py:class`Robot`









	
get_actuated_state()

	
	Returns the actuated state of the :py:class`Robot` comprised
	of the actuated states of the individual :py:class`KinematicGroup`.






	Returns

	combined actuated state of all :py:class`KinematicGroup` objects.



	Return type

	Dict[str, float]










	
get_endeffectors()

	
	Returns a list of possible endeffectors.
	These are the names of all KinematicGroup objects.
Since Transformations are internally converted to Groups,
this includes the names of all Transformations.






	Returns

	list of possible endeffectors.



	Return type

	list(str)










	
get_groups()

	
	Returns a dictionary of the py:class`KinematicGroup` managed by the :py:class`Robot`_
	Since Transformations are internally converted to Groups, this also returns all
Transformations.






	Returns

	The dictionary of py:class`KinematicGroup` objects.



	Return type

	Dict[str, KinematicGroup]










	
get_symbolic_rep(endeffector: str)

	This Function returnes a symbolic representation of the virtual chain.


	Parameters

	endeffector (str) – The name of the group whose virtual chain
models the desired endeffector



	Raises

	KeyError – If the endeffector argument is not the name of a transformation or group



	Returns

	A 4x4 symbolic casadi matrix containing the transformation from base to endeffector



	Return type

	SX










	
get_virtual_state()

	
	Returns the virtual state of the :py:class`Robot` comprised
	of the virtual states of the individual :py:class`KinematicGroup`.






	Returns

	
	combined virtual state of all
	:py:class`KinematicGroup` objects.









	Return type

	Dict[str,Dict[str, float]]










	
pass_group_arg_a_to_v(argv_dict)

	
	Passes optional actuated_to_virtual mapping arguments
	to :py:class`KinematicGroup` objects of the robot.






	Parameters

	argv_dict (Dict) – A dictionary containing the mapping arguments keyed with the
:py:class`KinematicGroup` names.



	Raises

	KeyError – If no group with the name given in the argument is part of the robot.










	
pass_group_arg_v_to_a(argv_dict: Dict)

	
	Passes optional virtual_to_actuated mapping arguments
	to :py:class`KinematicGroup` objects of the robot.






	Parameters

	argv_dict (Dict) – A dictionary containing the mapping arguments keyed with the
:py:class`KinematicGroup` names.



	Raises

	KeyError – If no group with the name given in the argument is part of the robot.










	
set_actuated_state(state: Dict[str, float])

	Sets the virtual state of multiple actuated joints of the robot.


	Parameters

	state (Dict[str, float]) – A dictionary containing the members of
__actuated_state that should be set.










	
set_virtual_state(state: Dict[str, Dict[str, float]])

	Sets the virtual state of multiple virtual joints of the robot.


	Parameters

	state (Dict[str,Dict[str, float]]) – 
	A dictionary containing the members of
	__virtual_state that should be set.





The new values need to be valid state
for the state of the joint.
















	
trip_kinematics.Robot.forward_kinematics(robot: trip_kinematics.Robot.Robot, endeffector)

	Calculates a robots transformation from base to endeffector using its current state


	Parameters

	robot (Robot) – The robot for which the forward kinematics should be computed



	Returns

	The Transformation from base to endeffector



	Return type

	numpy.array
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